Dominik Groos, Anna Maria Reuss, Peter Rupprecht, Tevye Stachniak, Christopher Lewis, Shuting Han, Adrian Roggenbach, Oliver Sturman, Yaroslav Sych, Martin Wieckhorst, Johannes Bohacek, Theofanis Karayannis, Adriano Aguzzi, Fritjof Helmchen
{"title":"A distinct hypothalamus–habenula circuit governs risk preference","authors":"Dominik Groos, Anna Maria Reuss, Peter Rupprecht, Tevye Stachniak, Christopher Lewis, Shuting Han, Adrian Roggenbach, Oliver Sturman, Yaroslav Sych, Martin Wieckhorst, Johannes Bohacek, Theofanis Karayannis, Adriano Aguzzi, Fritjof Helmchen","doi":"10.1038/s41593-024-01856-4","DOIUrl":null,"url":null,"abstract":"<p>Appropriate risk evaluation is essential for survival in complex, uncertain environments. Confronted with choosing between certain (safe) and uncertain (risky) options, animals show strong preference for either option consistently across extended time periods. How such risk preference is encoded in the brain remains elusive. A candidate region is the lateral habenula (LHb), which is prominently involved in value-guided behavior. Here, using a balanced two-alternative choice task and longitudinal two-photon calcium imaging in mice, we identify risk-preference-selective activity in LHb neurons reflecting individual risk preference before action selection. By using whole-brain anatomical tracing, multi-fiber photometry and projection-specific and cell-type-specific optogenetics, we find glutamatergic LHb projections from the medial (MH) but not lateral (LH) hypothalamus providing behavior-relevant synaptic input before action selection. Optogenetic stimulation of MH→LHb axons evoked excitatory and inhibitory postsynaptic responses, whereas LH→LHb projections were excitatory. We thus reveal functionally distinct hypothalamus–habenula circuits for risk preference in habitual economic decision-making.</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"35 1","pages":""},"PeriodicalIF":21.2000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41593-024-01856-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Appropriate risk evaluation is essential for survival in complex, uncertain environments. Confronted with choosing between certain (safe) and uncertain (risky) options, animals show strong preference for either option consistently across extended time periods. How such risk preference is encoded in the brain remains elusive. A candidate region is the lateral habenula (LHb), which is prominently involved in value-guided behavior. Here, using a balanced two-alternative choice task and longitudinal two-photon calcium imaging in mice, we identify risk-preference-selective activity in LHb neurons reflecting individual risk preference before action selection. By using whole-brain anatomical tracing, multi-fiber photometry and projection-specific and cell-type-specific optogenetics, we find glutamatergic LHb projections from the medial (MH) but not lateral (LH) hypothalamus providing behavior-relevant synaptic input before action selection. Optogenetic stimulation of MH→LHb axons evoked excitatory and inhibitory postsynaptic responses, whereas LH→LHb projections were excitatory. We thus reveal functionally distinct hypothalamus–habenula circuits for risk preference in habitual economic decision-making.
期刊介绍:
Nature Neuroscience, a multidisciplinary journal, publishes papers of the utmost quality and significance across all realms of neuroscience. The editors welcome contributions spanning molecular, cellular, systems, and cognitive neuroscience, along with psychophysics, computational modeling, and nervous system disorders. While no area is off-limits, studies offering fundamental insights into nervous system function receive priority.
The journal offers high visibility to both readers and authors, fostering interdisciplinary communication and accessibility to a broad audience. It maintains high standards of copy editing and production, rigorous peer review, rapid publication, and operates independently from academic societies and other vested interests.
In addition to primary research, Nature Neuroscience features news and views, reviews, editorials, commentaries, perspectives, book reviews, and correspondence, aiming to serve as the voice of the global neuroscience community.