Boosting Electrocatalytic Hydrogenation of Phenylacetylene via Accelerating Water Electrolysis on a Cr-Cu2O Surface

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shutao Wu, Xiongqin Liu, Dehui Qi, Fei Liu
{"title":"Boosting Electrocatalytic Hydrogenation of Phenylacetylene via Accelerating Water Electrolysis on a Cr-Cu2O Surface","authors":"Shutao Wu, Xiongqin Liu, Dehui Qi, Fei Liu","doi":"10.1021/acsami.4c17574","DOIUrl":null,"url":null,"abstract":"Electrochemical alkyne reduction with H<sub>2</sub>O as a hydrogen source represents a sustainable route for value-added olefin production. However, the reaction efficiency is hampered by the high voltage and low activity of Cu electrodes due to their weak adsorbed hydrogen (*H) generation property. In this article, we present the enhanced electrocatalysis of phenylacetylene to styrene over a highly dispersive Cr-doped Cu<sub>2</sub>O nanowire (Cr-Cu<sub>2</sub>O) cathode. The Cr-Cu<sub>2</sub>O demonstrates improved catalytic activity compared to pure Cu<sub>2</sub>O, achieving a high conversion of about 94.7% and a selectivity of 87.9% with a Faraday efficiency of 64.5% at a low potential of −1.15 V vs Hg/HgO. The combination of electrochemical characterization techniques and theoretical calculations demonstrated the key role of introduced Cr atoms in lowering the activation energy barrier of surface water electrolysis to *H and facilitating the adsorption of phenylacetylene, which promotes the effective hydrogenation of phenylacetylene with *H via an electrocatalytic hydrogenation mechanism. In short, this work provides a feasible strategy to enrich interfacial *H, thus improving the semihydrogenation performance of phenylacetylene.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"20 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c17574","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical alkyne reduction with H2O as a hydrogen source represents a sustainable route for value-added olefin production. However, the reaction efficiency is hampered by the high voltage and low activity of Cu electrodes due to their weak adsorbed hydrogen (*H) generation property. In this article, we present the enhanced electrocatalysis of phenylacetylene to styrene over a highly dispersive Cr-doped Cu2O nanowire (Cr-Cu2O) cathode. The Cr-Cu2O demonstrates improved catalytic activity compared to pure Cu2O, achieving a high conversion of about 94.7% and a selectivity of 87.9% with a Faraday efficiency of 64.5% at a low potential of −1.15 V vs Hg/HgO. The combination of electrochemical characterization techniques and theoretical calculations demonstrated the key role of introduced Cr atoms in lowering the activation energy barrier of surface water electrolysis to *H and facilitating the adsorption of phenylacetylene, which promotes the effective hydrogenation of phenylacetylene with *H via an electrocatalytic hydrogenation mechanism. In short, this work provides a feasible strategy to enrich interfacial *H, thus improving the semihydrogenation performance of phenylacetylene.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信