Newest Measurements of Hubble Constant from DESI 2024 Baryon Acoustic Oscillation Observations

Wuzheng Guo, Qiumin Wang, Shuo Cao, Marek Biesiada, Tonghua Liu, Yujie Lian, Xinyue Jiang, Chengsheng Mu and Dadian Cheng
{"title":"Newest Measurements of Hubble Constant from DESI 2024 Baryon Acoustic Oscillation Observations","authors":"Wuzheng Guo, Qiumin Wang, Shuo Cao, Marek Biesiada, Tonghua Liu, Yujie Lian, Xinyue Jiang, Chengsheng Mu and Dadian Cheng","doi":"10.3847/2041-8213/ada37f","DOIUrl":null,"url":null,"abstract":"In this Letter, we use the latest results from the Dark Energy Spectroscopic Instrument (DESI) survey to measure the Hubble constant. Baryon acoustic oscillation (BAO) observations released by the DESI survey, allow us to determine H0 from the first principles. Our method is purely data-driven and relies on unanchored luminosity distances reconstructed from Type Ia supernovae (SN Ia) data and H(z) reconstruction from cosmic chronometers. Thus, it circumvents calibrations related to the value of the sound horizon size at the baryon drag epoch or intrinsic luminosity of SN Ia. We find at a 68% confidence level, which provides the Hubble constant at an accuracy of 1.3% with minimal assumptions. Our assessments of this fundamental cosmological quantity using the BAO data spanning the redshift range z = 0.51–2.33 agree very well with Planck's results and TRGB results within 1σ. This result is still in a 4.3σ tension with the results of the Supernova H0 for the Equation of State.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ada37f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this Letter, we use the latest results from the Dark Energy Spectroscopic Instrument (DESI) survey to measure the Hubble constant. Baryon acoustic oscillation (BAO) observations released by the DESI survey, allow us to determine H0 from the first principles. Our method is purely data-driven and relies on unanchored luminosity distances reconstructed from Type Ia supernovae (SN Ia) data and H(z) reconstruction from cosmic chronometers. Thus, it circumvents calibrations related to the value of the sound horizon size at the baryon drag epoch or intrinsic luminosity of SN Ia. We find at a 68% confidence level, which provides the Hubble constant at an accuracy of 1.3% with minimal assumptions. Our assessments of this fundamental cosmological quantity using the BAO data spanning the redshift range z = 0.51–2.33 agree very well with Planck's results and TRGB results within 1σ. This result is still in a 4.3σ tension with the results of the Supernova H0 for the Equation of State.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信