Observation of multiple steady states with engineered dissipation

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Li Li, Tong Liu, Xue-Yi Guo, He Zhang, Silu Zhao, Zheng-An Wang, Zhongcheng Xiang, Xiaohui Song, Yu-Xiang Zhang, Kai Xu, Heng Fan, Dongning Zheng
{"title":"Observation of multiple steady states with engineered dissipation","authors":"Li Li, Tong Liu, Xue-Yi Guo, He Zhang, Silu Zhao, Zheng-An Wang, Zhongcheng Xiang, Xiaohui Song, Yu-Xiang Zhang, Kai Xu, Heng Fan, Dongning Zheng","doi":"10.1038/s41534-025-00958-6","DOIUrl":null,"url":null,"abstract":"<p>Simulating the dynamics of open quantum systems is essential in achieving practical quantum computation and understanding novel nonequilibrium behaviors. However, quantum simulation of a many-body system coupled to an engineered reservoir has yet to be fully explored in present-day experiment platforms. In this work, we introduce engineered noise into a one-dimensional ten-qubit superconducting quantum processor to emulate a generic many-body open quantum system. Our approach originates from the stochastic unravellings of the master equation. By measuring the end-to-end correlation, we identify multiple steady states stemmed from a strong symmetry, which is established on the modified Hamiltonian via Floquet engineering. Furthermore, we investigate the structure of the steady-state manifold by preparing initial states as a superposition of states within different sectors on a five-qubit chain. Our work provides a manageable and hardware-efficient strategy for the open-system quantum simulation.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"48 2 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-025-00958-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Simulating the dynamics of open quantum systems is essential in achieving practical quantum computation and understanding novel nonequilibrium behaviors. However, quantum simulation of a many-body system coupled to an engineered reservoir has yet to be fully explored in present-day experiment platforms. In this work, we introduce engineered noise into a one-dimensional ten-qubit superconducting quantum processor to emulate a generic many-body open quantum system. Our approach originates from the stochastic unravellings of the master equation. By measuring the end-to-end correlation, we identify multiple steady states stemmed from a strong symmetry, which is established on the modified Hamiltonian via Floquet engineering. Furthermore, we investigate the structure of the steady-state manifold by preparing initial states as a superposition of states within different sectors on a five-qubit chain. Our work provides a manageable and hardware-efficient strategy for the open-system quantum simulation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信