Xu Yan, Zhaoxiang Yang, Antong Ma, Zhiwu Chen, Yapei Wang
{"title":"AB-Type Zwitterionic Hydrogel Paint","authors":"Xu Yan, Zhaoxiang Yang, Antong Ma, Zhiwu Chen, Yapei Wang","doi":"10.1021/acs.langmuir.4c04857","DOIUrl":null,"url":null,"abstract":"Zwitterionic hydrogels exhibit excellent nonfouling and hemocompatibility. However, the practical application of these materials as antifouling coatings for biomedical devices is hindered by several key challenges, including the harsh preparation conditions and the weak coating stability. Here, we present a two-component zwitterionic hydrogel paint for the in situ preparation of robust zwitterionic hydrogel coatings on various substrate surfaces without UV assistance. It is performed by the curing and adhesion of a zwitterionic hydrogel simultaneously through the ring opening reaction of epoxy and amino inspired by the successful commercial two-component epoxy structural glue. The obtained AB-type PSBMA coating can withstand water flow velocities of up to 15 m/s and still maintain its structural integrity and functional stability. It is noteworthy that the coating preparation process does not require the use of any organic solvent, which greatly simplifies the postprocessing steps for its application in medical devices. Moreover, the coating not only resists bacterial and cell adhesion but also exhibits favorable hemocompatibility. This approach offers a novel concept for the design of zwitterionic hydrogel coatings for biomedical devices.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"7 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04857","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Zwitterionic hydrogels exhibit excellent nonfouling and hemocompatibility. However, the practical application of these materials as antifouling coatings for biomedical devices is hindered by several key challenges, including the harsh preparation conditions and the weak coating stability. Here, we present a two-component zwitterionic hydrogel paint for the in situ preparation of robust zwitterionic hydrogel coatings on various substrate surfaces without UV assistance. It is performed by the curing and adhesion of a zwitterionic hydrogel simultaneously through the ring opening reaction of epoxy and amino inspired by the successful commercial two-component epoxy structural glue. The obtained AB-type PSBMA coating can withstand water flow velocities of up to 15 m/s and still maintain its structural integrity and functional stability. It is noteworthy that the coating preparation process does not require the use of any organic solvent, which greatly simplifies the postprocessing steps for its application in medical devices. Moreover, the coating not only resists bacterial and cell adhesion but also exhibits favorable hemocompatibility. This approach offers a novel concept for the design of zwitterionic hydrogel coatings for biomedical devices.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).