Cai Chen, Shu-Le Li, Anthony D. So, Yao-Yang Xu, Zhao-Feng Guo, Xinbing Wang, David W. Graham, Yong-Guan Zhu
{"title":"Using Large Language Models to Assist Antimicrobial Resistance Policy Development: Integrating the Environment into Health Protection Planning","authors":"Cai Chen, Shu-Le Li, Anthony D. So, Yao-Yang Xu, Zhao-Feng Guo, Xinbing Wang, David W. Graham, Yong-Guan Zhu","doi":"10.1021/acs.est.4c07842","DOIUrl":null,"url":null,"abstract":"Increasing antimicrobial resistance (AMR) poses a substantial threat to global health and economies, which has led many countries and regions to develop AMR National Action Plans (NAPs). However, inadequate logistical capacity, funding, and essential information can hinder NAP policymaking, especially in low-to-middle-income countries (LMICs). Therefore, major gaps exist between aspirations and actions, such as fully operationalized environmental AMR surveillance programs in NAPs. To help bridge knowledge gaps, we compiled a multilingual database that contains policy guidance from 146 countries composed of NAPs, internal reports, and other guidance documents on AMR mitigations, including environmental considerations. Leveraging this database, we developed an AMR-Policy GPT, a large language model with advanced retrieval-augmented generation capabilities. This prototype model can search and summarize evidence from plans, metadata, and technical knowledge and provide traceable references from global document databases. It was then manually validated to show its proficiency in accurately managing diverse inquiries while minimizing misinformation. Overall, the AMR-Policy GPT offers a prototype that, with the deepening of its database and further road testing, has the potential to support inclusive, evidence-informed AMR policy guidance to support governments, research, and public agencies. A conversational version of our prototype is available at www.liuhuibot.com/amrpolicy.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"1 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c07842","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Increasing antimicrobial resistance (AMR) poses a substantial threat to global health and economies, which has led many countries and regions to develop AMR National Action Plans (NAPs). However, inadequate logistical capacity, funding, and essential information can hinder NAP policymaking, especially in low-to-middle-income countries (LMICs). Therefore, major gaps exist between aspirations and actions, such as fully operationalized environmental AMR surveillance programs in NAPs. To help bridge knowledge gaps, we compiled a multilingual database that contains policy guidance from 146 countries composed of NAPs, internal reports, and other guidance documents on AMR mitigations, including environmental considerations. Leveraging this database, we developed an AMR-Policy GPT, a large language model with advanced retrieval-augmented generation capabilities. This prototype model can search and summarize evidence from plans, metadata, and technical knowledge and provide traceable references from global document databases. It was then manually validated to show its proficiency in accurately managing diverse inquiries while minimizing misinformation. Overall, the AMR-Policy GPT offers a prototype that, with the deepening of its database and further road testing, has the potential to support inclusive, evidence-informed AMR policy guidance to support governments, research, and public agencies. A conversational version of our prototype is available at www.liuhuibot.com/amrpolicy.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.