In Situ Growth of Metal‐Organic Layer on Polyoxometalate‐etching Cu2O to Boost CO2 Reduction with High Stability

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yu-Jie Wang, Xin Cheng, Na-Na Ma, Wei-Yi Cheng, Peng Zhang, Fang Luo, Wen-Xiong Shi, Shuang Yao, Tong-Bu Lu, Zhi-Ming Zhang
{"title":"In Situ Growth of Metal‐Organic Layer on Polyoxometalate‐etching Cu2O to Boost CO2 Reduction with High Stability","authors":"Yu-Jie Wang, Xin Cheng, Na-Na Ma, Wei-Yi Cheng, Peng Zhang, Fang Luo, Wen-Xiong Shi, Shuang Yao, Tong-Bu Lu, Zhi-Ming Zhang","doi":"10.1002/anie.202423204","DOIUrl":null,"url":null,"abstract":"Low‐cost Cu2O with a suitable band gap holds great potential for solar utilization. However severe photocorrosion and weak CO2 capture capability have significantly hindered their application in artificial photosynthesis. Herein, polyoxometalate (POM)‐etching and in situ growth of metal‐organic framework (MOF) can simultaneously incorporate electron‐sponge and HKUST protective layer into Cu2O. The resulting ternary composites Cu2O@POM@HKUST‐n (POM = PMo12O40 and PW12O40) with dual hetero‐interfaces can efficiently convert CO2 to HCOOH with 5226 µmol g‐1 yield, over 5 and 55 times higher than that of Cu2O (1010 µmol g‐1) and Cu2O@HKUST (95.02 µmol g‐1). In situ XPS and DFT studies reveal that Cu mainly existed in the form of Cu2O and Cu‐MOF, while a unique Cux+ (1< x ≤2) surface layer formed upon the Cu2O matrix surrounding POMs for CO2 absorption and activation. Systematic investigations demonstrate that the electron‐sponge can efficiently capture electrons from excited Cu2O to promote the generation of a Cux+ surface layer, while the closely surface‐coating metal‐organic layer can act as protective layer and CO2 adsorbent. This dual function concurrently contributes to promote photocatalysis and prevent Cu2O degradation. Remarkably, the ternary composites exhibit much enhanced photochemical stability and can be used for over 60 h without noticeable activity loss.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"47 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202423204","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Low‐cost Cu2O with a suitable band gap holds great potential for solar utilization. However severe photocorrosion and weak CO2 capture capability have significantly hindered their application in artificial photosynthesis. Herein, polyoxometalate (POM)‐etching and in situ growth of metal‐organic framework (MOF) can simultaneously incorporate electron‐sponge and HKUST protective layer into Cu2O. The resulting ternary composites Cu2O@POM@HKUST‐n (POM = PMo12O40 and PW12O40) with dual hetero‐interfaces can efficiently convert CO2 to HCOOH with 5226 µmol g‐1 yield, over 5 and 55 times higher than that of Cu2O (1010 µmol g‐1) and Cu2O@HKUST (95.02 µmol g‐1). In situ XPS and DFT studies reveal that Cu mainly existed in the form of Cu2O and Cu‐MOF, while a unique Cux+ (1< x ≤2) surface layer formed upon the Cu2O matrix surrounding POMs for CO2 absorption and activation. Systematic investigations demonstrate that the electron‐sponge can efficiently capture electrons from excited Cu2O to promote the generation of a Cux+ surface layer, while the closely surface‐coating metal‐organic layer can act as protective layer and CO2 adsorbent. This dual function concurrently contributes to promote photocatalysis and prevent Cu2O degradation. Remarkably, the ternary composites exhibit much enhanced photochemical stability and can be used for over 60 h without noticeable activity loss.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信