Homolytic versus Heterolytic Methane Hydroxylation in Copper Zeolites

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL
Quan Manh Phung, Takeshi Yanai, Dieter Plessers, Bert F. Sels, Robert A. Schoonheydt, Kristine Pierloot
{"title":"Homolytic versus Heterolytic Methane Hydroxylation in Copper Zeolites","authors":"Quan Manh Phung, Takeshi Yanai, Dieter Plessers, Bert F. Sels, Robert A. Schoonheydt, Kristine Pierloot","doi":"10.1021/acscatal.4c06246","DOIUrl":null,"url":null,"abstract":"Oxygen-activated copper zeolites are capable of selectively converting methane to methanol at mild conditions, using a mono-oxygen bridged Cu(II) site [CuOCu]<sup>2+</sup> as the active core. Based on previous DFT reports on the [CuOCu]<sup>2+</sup> + CH<sub>4</sub> reaction a general consensus was reached concerning the methane oxidation mechanism, where the rate-limiting step involves homolytic C–H bond cleavage to form [Cu(OH)Cu]<sup>2+</sup> with a physisorbed •CH<sub>3</sub>. An alternative possibility, i.e. heterolytic H-abstraction passing through a four-center transition state to give an intermediate with a Cu–CH<sub>3</sub> bond, was given consideration only in a few recent DFT studies, but was found less favorable than radical C–H activation. In this contribution methane-to-methanol conversion by Cu–CHA is investigated using large cluster models and employing either DFT, with an extensive list of 97 functionals, or the high-level correlated DMRG/cu(4)-CASPT2 method. In all cases homolytic C–H dissociation most favorably proceeds via a (<i>S</i> = 1) transition state TS1r, whereas the transition state of heterolytic H-abstraction, TS1n, has an (<i>S</i> = 0) ground state. The DMRG/cu(4)-CASPT2 results convincingly point to the heterolytic route, with a calculated activation enthalpy of 12.3 kcal/mol, as compared to 21.1 kcal/mol for homolytic C–H dissociation. In contrast, the results obtained with DFT are strongly functional dependent. Conform with previous DFT studies, homolytic H-abstraction is preferred by the B3LYP functional (almost exclusively used in previous cluster model studies). However, many other functionals, hybrid meta-GGA functionals in particular, agree with DMRG/cu(4)-CASPT2 on heterolytic C–H activation. The present results reopen the debate on the general validity of the radical rebound mechanism for methane hydroxylation by a [CuOCu]<sup>2+</sup> core in copper zeolites and also highlight the need for caution when relying on a specific DFT functional to elucidate oxidation reaction mechanisms in metal-based catalytic systems.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"28 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c06246","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Oxygen-activated copper zeolites are capable of selectively converting methane to methanol at mild conditions, using a mono-oxygen bridged Cu(II) site [CuOCu]2+ as the active core. Based on previous DFT reports on the [CuOCu]2+ + CH4 reaction a general consensus was reached concerning the methane oxidation mechanism, where the rate-limiting step involves homolytic C–H bond cleavage to form [Cu(OH)Cu]2+ with a physisorbed •CH3. An alternative possibility, i.e. heterolytic H-abstraction passing through a four-center transition state to give an intermediate with a Cu–CH3 bond, was given consideration only in a few recent DFT studies, but was found less favorable than radical C–H activation. In this contribution methane-to-methanol conversion by Cu–CHA is investigated using large cluster models and employing either DFT, with an extensive list of 97 functionals, or the high-level correlated DMRG/cu(4)-CASPT2 method. In all cases homolytic C–H dissociation most favorably proceeds via a (S = 1) transition state TS1r, whereas the transition state of heterolytic H-abstraction, TS1n, has an (S = 0) ground state. The DMRG/cu(4)-CASPT2 results convincingly point to the heterolytic route, with a calculated activation enthalpy of 12.3 kcal/mol, as compared to 21.1 kcal/mol for homolytic C–H dissociation. In contrast, the results obtained with DFT are strongly functional dependent. Conform with previous DFT studies, homolytic H-abstraction is preferred by the B3LYP functional (almost exclusively used in previous cluster model studies). However, many other functionals, hybrid meta-GGA functionals in particular, agree with DMRG/cu(4)-CASPT2 on heterolytic C–H activation. The present results reopen the debate on the general validity of the radical rebound mechanism for methane hydroxylation by a [CuOCu]2+ core in copper zeolites and also highlight the need for caution when relying on a specific DFT functional to elucidate oxidation reaction mechanisms in metal-based catalytic systems.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信