Rationally Designed Air Electrode Boosting Electrochemical Performance of Protonic Ceramic Cells

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Chunmei Tang, Baoyin Yuan, Xiaohan Zhang, Fangyuan Zheng, Qingwen Su, Ling Meng, Lei Du, Dongxiang Luo, Yoshitaka Aoki, Ning Wang, Siyu Ye
{"title":"Rationally Designed Air Electrode Boosting Electrochemical Performance of Protonic Ceramic Cells","authors":"Chunmei Tang, Baoyin Yuan, Xiaohan Zhang, Fangyuan Zheng, Qingwen Su, Ling Meng, Lei Du, Dongxiang Luo, Yoshitaka Aoki, Ning Wang, Siyu Ye","doi":"10.1002/aenm.202402654","DOIUrl":null,"url":null,"abstract":"Protonic ceramic cells (PCCs) have gained significant attention as a promising electrochemical device for hydrogen production and power generation at intermediate temperatures. However, the lack of high-performance air electrodes, specifically in terms of proton conduction ability, has severely hindered the improvement of electrochemical performances for PCCs. In this study, a high-efficiency air electrode La<sub>0.8</sub>Ba<sub>0.2</sub>CoO<sub>3</sub> (LBC) is rationally designed and researched by a machine-learning model and density functional theory (DFT) calculation, which boosts the performances of PCCs. Specifically, an elements-property map for designing high-efficiency oxides is created by predicting and studying the proton uptake ability of La<sub>1–</sub><i><sub>x</sub></i>A′<i><sub>x</sub></i>BO<sub>3</sub> (A′ = Na, K, Ca, Mg, Ba, Cu, etc.) by an eXtreme Gradient Boosting model. PCC with LBC air electrode yields high current destiny in electrolysis mode (1.72 A cm<sup>−2</sup> at 600 °C) and power density in fuel cell mode (1.00 W cm<sup>−2</sup> at 600 °C). In addition, an ultra-low air electrode reaction resistance (0.03 Ω cm<sup>2</sup> at 600 °C) is achieved, because LBC can significantly facilitate the formation of O<sub>2</sub><sup>*</sup>. This work not only reports an effective air electrode but also presents a new avenue for the rational design of air electrodes for PCCs.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"28 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202402654","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Protonic ceramic cells (PCCs) have gained significant attention as a promising electrochemical device for hydrogen production and power generation at intermediate temperatures. However, the lack of high-performance air electrodes, specifically in terms of proton conduction ability, has severely hindered the improvement of electrochemical performances for PCCs. In this study, a high-efficiency air electrode La0.8Ba0.2CoO3 (LBC) is rationally designed and researched by a machine-learning model and density functional theory (DFT) calculation, which boosts the performances of PCCs. Specifically, an elements-property map for designing high-efficiency oxides is created by predicting and studying the proton uptake ability of La1–xA′xBO3 (A′ = Na, K, Ca, Mg, Ba, Cu, etc.) by an eXtreme Gradient Boosting model. PCC with LBC air electrode yields high current destiny in electrolysis mode (1.72 A cm−2 at 600 °C) and power density in fuel cell mode (1.00 W cm−2 at 600 °C). In addition, an ultra-low air electrode reaction resistance (0.03 Ω cm2 at 600 °C) is achieved, because LBC can significantly facilitate the formation of O2*. This work not only reports an effective air electrode but also presents a new avenue for the rational design of air electrodes for PCCs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信