2D Monolayer Electrocatalysts for CO2 Electroreduction

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-01-07 DOI:10.1039/d4nr04109g
Xuemin An, Deren Yang
{"title":"2D Monolayer Electrocatalysts for CO2 Electroreduction","authors":"Xuemin An, Deren Yang","doi":"10.1039/d4nr04109g","DOIUrl":null,"url":null,"abstract":"Electrocatalytic carbon dioxide reduction reaction (CO2RR) is an attractive method for converting atmospheric CO2 into value-added chemicals and fuels. In order to overcome the low efficiency and durability that hinder its practical application, a significant amount of research has been dedicated to designing novel catalysts at the nanoscale and even the atomic scale. Two-dimensional (2D) monolayer materials inherit the merits of both 2D materials and single-atom materials. Through bridging the gap between heterogeneous and homogeneous catalysis, 2D monolayer materials exhibit great potential in CO2RR due to the unique structural/electronic properties, high atom utilization , low mass transfer resistance and uniform active sites. Here, we systematically overview the development and application of 2D monolayer catalysts for electrocatalytic CO2RR. Firstly, an overview of the CO2RR technology is presented. Subsequently, a comprehensive discussion is undertaken on various types of 2D monolayer electrocatalysts, such as 2D graphene-based materials, 2D monolayer metal-organic frameworks (MOFs), 2D monolayer covalent organic frameworks (COFs) and 2D monolayer metal-based materials. Their respective electrocatalytic performances are also systematically analyzed. More importantly, novel perspectives on the primary challenges and opportunities associated with the utilization of 2D monolayer materials in CO2RR are presented. Achieving high-quality 2D monolayer materials and producing high-selective multi-carbon products remains the two major challenges in the design, synthesis and appliaction of 2D monolayer electrocatalysts. Addressing these synthesis-related and performance-related issues is sigificant for the progression and practical utilization of 2D monolayer materials in CO₂RR.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"35 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr04109g","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalytic carbon dioxide reduction reaction (CO2RR) is an attractive method for converting atmospheric CO2 into value-added chemicals and fuels. In order to overcome the low efficiency and durability that hinder its practical application, a significant amount of research has been dedicated to designing novel catalysts at the nanoscale and even the atomic scale. Two-dimensional (2D) monolayer materials inherit the merits of both 2D materials and single-atom materials. Through bridging the gap between heterogeneous and homogeneous catalysis, 2D monolayer materials exhibit great potential in CO2RR due to the unique structural/electronic properties, high atom utilization , low mass transfer resistance and uniform active sites. Here, we systematically overview the development and application of 2D monolayer catalysts for electrocatalytic CO2RR. Firstly, an overview of the CO2RR technology is presented. Subsequently, a comprehensive discussion is undertaken on various types of 2D monolayer electrocatalysts, such as 2D graphene-based materials, 2D monolayer metal-organic frameworks (MOFs), 2D monolayer covalent organic frameworks (COFs) and 2D monolayer metal-based materials. Their respective electrocatalytic performances are also systematically analyzed. More importantly, novel perspectives on the primary challenges and opportunities associated with the utilization of 2D monolayer materials in CO2RR are presented. Achieving high-quality 2D monolayer materials and producing high-selective multi-carbon products remains the two major challenges in the design, synthesis and appliaction of 2D monolayer electrocatalysts. Addressing these synthesis-related and performance-related issues is sigificant for the progression and practical utilization of 2D monolayer materials in CO₂RR.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信