Xuan Zhou, Pengbo Wang, Yinong Li, Yaoxuan Han, Jianying Chen, Kunpeng Tang, Lei Shi, Yi Zhang, Rui Zhang, Zhiwei Lin
{"title":"Accurate DNA Sequence Prediction for Sorting Target-Chirality Carbon Nanotubes and Manipulating Their Functionalities","authors":"Xuan Zhou, Pengbo Wang, Yinong Li, Yaoxuan Han, Jianying Chen, Kunpeng Tang, Lei Shi, Yi Zhang, Rui Zhang, Zhiwei Lin","doi":"10.1021/acsnano.4c14603","DOIUrl":null,"url":null,"abstract":"Synthetic single-wall carbon nanotubes (SWCNTs) contain various chiralities, which can be sorted by DNA. However, finding DNA sequences for this purpose mainly relies on trial-and-error methods. Predicting the right DNA sequences to sort SWCNTs remains a substantial challenge. Moreover, it is even more daunting to predict sequences for sorting SWCNTs with target chirality. Here, we present a deep-learning (DL) enhanced strategy for the accurate prediction of DNA sequences capable of sorting target-chirality nanotubes. We first experimentally screened 216 DNA sequences using aqueous two-phase (ATP) separation, resulting in 116 resolving sequences that can purify 17 distinct single-chirality SWCNTs. These experimental results created a comprehensive training data set. We utilized the recently released 3D molecular representation learning framework, Uni-Mol, to construct a DL workflow that maps atomistic-level structural information on DNA sequences into the feature space. This information captures the structural features of DNA molecules that are crucial for their interactions with SWCNTs. This may account for the superior performance of our DL models. The models successfully predicted resolving sequences for (6,5), (6,6), and (7,4) SWCNTs with accuracy rates of 87.5, 90, and 70%, respectively. Importantly, the discovery of numerous resolving sequences for (6,5) SWCNTs allows us to systematically manipulate the sequence-dependent absorption spectral shift, photoluminescence intensity, and surfactant sensitivity of DNA-(6,5) hybrids and elucidate the underlying mechanisms.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"82 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c14603","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Synthetic single-wall carbon nanotubes (SWCNTs) contain various chiralities, which can be sorted by DNA. However, finding DNA sequences for this purpose mainly relies on trial-and-error methods. Predicting the right DNA sequences to sort SWCNTs remains a substantial challenge. Moreover, it is even more daunting to predict sequences for sorting SWCNTs with target chirality. Here, we present a deep-learning (DL) enhanced strategy for the accurate prediction of DNA sequences capable of sorting target-chirality nanotubes. We first experimentally screened 216 DNA sequences using aqueous two-phase (ATP) separation, resulting in 116 resolving sequences that can purify 17 distinct single-chirality SWCNTs. These experimental results created a comprehensive training data set. We utilized the recently released 3D molecular representation learning framework, Uni-Mol, to construct a DL workflow that maps atomistic-level structural information on DNA sequences into the feature space. This information captures the structural features of DNA molecules that are crucial for their interactions with SWCNTs. This may account for the superior performance of our DL models. The models successfully predicted resolving sequences for (6,5), (6,6), and (7,4) SWCNTs with accuracy rates of 87.5, 90, and 70%, respectively. Importantly, the discovery of numerous resolving sequences for (6,5) SWCNTs allows us to systematically manipulate the sequence-dependent absorption spectral shift, photoluminescence intensity, and surfactant sensitivity of DNA-(6,5) hybrids and elucidate the underlying mechanisms.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.