The helmeted hornbill casque is reinforced by a bundle of exceptionally thick, rod‐like trabeculae

IF 4.1 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Venkata A. Surapaneni, Benjamin Flaum, Mike Schindler, Khizar Hayat, Jan Wölfer, Daniel Baum, Ruien Hu, Ting Fai Kong, Michael Doube, Mason N. Dean
{"title":"The helmeted hornbill casque is reinforced by a bundle of exceptionally thick, rod‐like trabeculae","authors":"Venkata A. Surapaneni, Benjamin Flaum, Mike Schindler, Khizar Hayat, Jan Wölfer, Daniel Baum, Ruien Hu, Ting Fai Kong, Michael Doube, Mason N. Dean","doi":"10.1111/nyas.15254","DOIUrl":null,"url":null,"abstract":"Among hornbill birds, the critically endangered helmeted hornbill (<jats:italic>Rhinoplax vigil</jats:italic>) is notable for its casque (a bulbous beak protrusion) being filled with trabeculae and fronted by a very thick keratin layer. Casque function is debated but appears central to aerial jousting, where birds (typically males) collide casques at high speeds in a mid‐flight display that is audible for more than 100 m. We characterized the structural relationship between the skull and casque anatomy using X‐ray microtomography and quantitative trabecular network analysis to examine how the casque sustains extreme impact. The casque comprises a keratin veneer (rhamphotheca, ∼8× thicker than beak keratin), which slots over the internal bony casque like a tight‐fitting sheath. The bony casque's central cavity contains a network of trabeculae—heavily aligned and predominantly rod‐like, among the thickest described in vertebrates—forming a massive rostrocaudal strut spanning the casque's length, bridging rostral (impact), and caudal (braincase) surfaces. Quantitative network characterizations indicate no differences between male and female trabecular architectures. This suggests that females may also joust or that casques play other roles. Our results argue that the casque's impact loading demands and shapes a high‐safety‐factor construction that involves extreme trabecular morphologies among vertebrates, architectures that also have the potential for informing the design of collision‐resistant materials.","PeriodicalId":8250,"journal":{"name":"Annals of the New York Academy of Sciences","volume":"22 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the New York Academy of Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1111/nyas.15254","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Among hornbill birds, the critically endangered helmeted hornbill (Rhinoplax vigil) is notable for its casque (a bulbous beak protrusion) being filled with trabeculae and fronted by a very thick keratin layer. Casque function is debated but appears central to aerial jousting, where birds (typically males) collide casques at high speeds in a mid‐flight display that is audible for more than 100 m. We characterized the structural relationship between the skull and casque anatomy using X‐ray microtomography and quantitative trabecular network analysis to examine how the casque sustains extreme impact. The casque comprises a keratin veneer (rhamphotheca, ∼8× thicker than beak keratin), which slots over the internal bony casque like a tight‐fitting sheath. The bony casque's central cavity contains a network of trabeculae—heavily aligned and predominantly rod‐like, among the thickest described in vertebrates—forming a massive rostrocaudal strut spanning the casque's length, bridging rostral (impact), and caudal (braincase) surfaces. Quantitative network characterizations indicate no differences between male and female trabecular architectures. This suggests that females may also joust or that casques play other roles. Our results argue that the casque's impact loading demands and shapes a high‐safety‐factor construction that involves extreme trabecular morphologies among vertebrates, architectures that also have the potential for informing the design of collision‐resistant materials.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of the New York Academy of Sciences
Annals of the New York Academy of Sciences 综合性期刊-综合性期刊
CiteScore
11.00
自引率
1.90%
发文量
193
审稿时长
2-4 weeks
期刊介绍: Published on behalf of the New York Academy of Sciences, Annals of the New York Academy of Sciences provides multidisciplinary perspectives on research of current scientific interest with far-reaching implications for the wider scientific community and society at large. Each special issue assembles the best thinking of key contributors to a field of investigation at a time when emerging developments offer the promise of new insight. Individually themed, Annals special issues stimulate new ways to think about science by providing a neutral forum for discourse—within and across many institutions and fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信