3D Terahertz Confocal Imaging with Chromatic Metasurface

IF 9.8 1区 物理与天体物理 Q1 OPTICS
Xiaolong You, Rajour Tanyi Ako, Sharath Sriram, Withawat Withayachumnankul
{"title":"3D Terahertz Confocal Imaging with Chromatic Metasurface","authors":"Xiaolong You, Rajour Tanyi Ako, Sharath Sriram, Withawat Withayachumnankul","doi":"10.1002/lpor.202401011","DOIUrl":null,"url":null,"abstract":"Terahertz confocal imaging allows 3D see-through of a non-metallic object with high resolution. Conventional methods acquiring 3D images of thick objects suffer from limited depth-of-field, constrained depth resolution, and/or inconsistent spatial resolution at different depths. To address these limitations, the intrinsic chromatic aberration of a typical focusing metasurface is exploited to achieve frequency-dependent focal lengths. An object located within this extended focal range can be readily 3D inspected by performing 2D raster scans. A rigorous analysis reveals that the focal spot maintains a constant waist diameter of 2.4 mm (equivalent to 2.2<span data-altimg=\"/cms/asset/199d96d8-9b3c-41ae-916f-9bf46c897bd9/lpor202401011-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"2\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/lpor202401011-math-0001.png\"><mjx-semantics><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"lamda 0\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:18638880:media:lpor202401011:lpor202401011-math-0001\" display=\"inline\" location=\"graphic/lpor202401011-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"greekletter\" data-semantic-speech=\"lamda 0\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">λ</mi><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\">0</mn></msub>$\\lambda _{0}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> at 275 GHz) and migrates 68.1 mm (equivalent to 62.4<span data-altimg=\"/cms/asset/a75a3dbe-670c-4aac-bceb-98a34cdf80e9/lpor202401011-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"3\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/lpor202401011-math-0002.png\"><mjx-semantics><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"lamda 0\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:18638880:media:lpor202401011:lpor202401011-math-0002\" display=\"inline\" location=\"graphic/lpor202401011-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"greekletter\" data-semantic-speech=\"lamda 0\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">λ</mi><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\">0</mn></msub>$\\lambda _{0}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, or 16.4 times of Rayleigh length, or 1.4-fold of the designed focal length at 275 GHz) from 175 to 525 GHz, and thus achieving a consistent spatial resolution and a large depth-of-field for 3D imaging. Importantly, this large depth-of-field is achieved with a relatively high numerical aperture of around 0.42. Measurements conducted between 220 and 330 GHz exhibit close agreement with the calculation. To demonstrate its imaging functionality, two stacked papers with different texts, a mobile phone, and earphones concealed in a charging case are imaged, where a short-time Fourier transform is implemented in the time-domain terahertz images to enhance image contrast. The presented metasurface is technologically significant for imaging systems to rapidly inspect objects in 3D with exceptional resolutions. Its potential applications include in-situ defect detection and object identification in security screening.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"46 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202401011","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Terahertz confocal imaging allows 3D see-through of a non-metallic object with high resolution. Conventional methods acquiring 3D images of thick objects suffer from limited depth-of-field, constrained depth resolution, and/or inconsistent spatial resolution at different depths. To address these limitations, the intrinsic chromatic aberration of a typical focusing metasurface is exploited to achieve frequency-dependent focal lengths. An object located within this extended focal range can be readily 3D inspected by performing 2D raster scans. A rigorous analysis reveals that the focal spot maintains a constant waist diameter of 2.4 mm (equivalent to 2.2λ0$\lambda _{0}$ at 275 GHz) and migrates 68.1 mm (equivalent to 62.4λ0$\lambda _{0}$, or 16.4 times of Rayleigh length, or 1.4-fold of the designed focal length at 275 GHz) from 175 to 525 GHz, and thus achieving a consistent spatial resolution and a large depth-of-field for 3D imaging. Importantly, this large depth-of-field is achieved with a relatively high numerical aperture of around 0.42. Measurements conducted between 220 and 330 GHz exhibit close agreement with the calculation. To demonstrate its imaging functionality, two stacked papers with different texts, a mobile phone, and earphones concealed in a charging case are imaged, where a short-time Fourier transform is implemented in the time-domain terahertz images to enhance image contrast. The presented metasurface is technologically significant for imaging systems to rapidly inspect objects in 3D with exceptional resolutions. Its potential applications include in-situ defect detection and object identification in security screening.

Abstract Image

彩色超表面的三维太赫兹共聚焦成像
太赫兹共聚焦成像可以实现非金属物体的高分辨率3D透视。传统的厚物体三维图像获取方法存在景深有限、深度分辨率受限、不同深度空间分辨率不一致等问题。为了解决这些限制,利用典型聚焦超表面的固有色差来实现频率相关的焦距。位于该扩展焦距范围内的物体可以通过执行2D光栅扫描轻松地进行3D检查。严格分析表明,焦斑在175 ~ 525 GHz范围内保持2.4 mm(相当于2.2λ0$\lambda _{0}$)的恒定腰径,并迁移68.1 mm(相当于62.4λ0$\lambda _{0}$,或瑞利长度的16.4倍,或设计焦距的1.4倍),从而实现了一致的空间分辨率和大景深的三维成像。重要的是,这种大景深是在0.42左右的相对较高的数值孔径下实现的。在220和330 GHz之间进行的测量与计算结果非常吻合。为了演示其成像功能,将两张不同文本的堆叠纸,手机和隐藏在充电盒中的耳机进行成像,其中在时域太赫兹图像中实现短时傅里叶变换以增强图像对比度。所提出的超表面在技术上对成像系统具有重要意义,可以快速检测具有特殊分辨率的3D物体。它的潜在应用包括现场缺陷检测和安全筛查中的目标识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信