Systematic integral evaluation for spin-resummed binary dynamics

IF 5.3 2区 物理与天体物理 Q1 Physics and Astronomy
Gang Chen, Jung-Wook Kim, Tianheng Wang
{"title":"Systematic integral evaluation for spin-resummed binary dynamics","authors":"Gang Chen, Jung-Wook Kim, Tianheng Wang","doi":"10.1103/physrevd.111.l021701","DOIUrl":null,"url":null,"abstract":"Computation of spin-resummed observables in post-Minkowskian dynamics typically involve evaluation of Feynman integrals deformed by an exponential factor, where the exponent is a linear sum of the momenta being integrated. Such integrals can be viewed as tensor integral generating functions, which provide alternative approaches to tensor reduction of Feynman integrals. We develop a systematic method to evaluate tensor integral generating functions using multiloop integration techniques. The spin-resummed aligned-spin eikonal at second post-Minkowskian order is considered as a phenomenologically relevant example where evaluation of tensor integral generating functions is necessary. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"22 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.l021701","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Computation of spin-resummed observables in post-Minkowskian dynamics typically involve evaluation of Feynman integrals deformed by an exponential factor, where the exponent is a linear sum of the momenta being integrated. Such integrals can be viewed as tensor integral generating functions, which provide alternative approaches to tensor reduction of Feynman integrals. We develop a systematic method to evaluate tensor integral generating functions using multiloop integration techniques. The spin-resummed aligned-spin eikonal at second post-Minkowskian order is considered as a phenomenologically relevant example where evaluation of tensor integral generating functions is necessary. Published by the American Physical Society 2025
自旋恢复二元动力学的系统积分评价
后闵可夫斯基动力学中自旋恢复观测值的计算通常涉及由指数因子变形的费曼积分的计算,其中指数是被积分动量的线性和。这样的积分可以看作是张量积分生成函数,它为费曼积分的张量化简提供了另一种方法。我们开发了一个系统的方法来评估张量积分生成函数使用多环积分技术。在二阶后闵可夫斯基阶上,自旋恢复对准自旋角被认为是一个与现象学相关的例子,其中张量积分生成函数的求值是必要的。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信