Novel organic molecular bridging strategy in Ti3CN interlayers towards stable and rapid sodium ions storage

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY
Xiao-Rui Wang , Wen-Jie Shi , Ai-Jun Jiao , Zhen-Hai Fu , Min-Peng Li , Hong-Yan Li , Cai-Xia Zheng , Yu-Xia Hu , Hong-Tao Xue , Mao-Cheng Liu
{"title":"Novel organic molecular bridging strategy in Ti3CN interlayers towards stable and rapid sodium ions storage","authors":"Xiao-Rui Wang ,&nbsp;Wen-Jie Shi ,&nbsp;Ai-Jun Jiao ,&nbsp;Zhen-Hai Fu ,&nbsp;Min-Peng Li ,&nbsp;Hong-Yan Li ,&nbsp;Cai-Xia Zheng ,&nbsp;Yu-Xia Hu ,&nbsp;Hong-Tao Xue ,&nbsp;Mao-Cheng Liu","doi":"10.1016/j.electacta.2025.145670","DOIUrl":null,"url":null,"abstract":"<div><div>MXenes is considered as one of the most potential sodium ions storage materials due to its superior metallic conductivity, abundant surface functional groups, extensive specific surface area, and tunable interlayer spacing. Nevertheless, its practical application is hindered by severe volumetric expansion/shrinkage and slow sodium ions diffusion during sodium ions insertion/extraction process. Herein, a novel organic acid molecules bridging strategy is reported to stabilize layered structure and adjust the interlayer spacing of Ti<sub>3</sub>CN, which is realized by bridging organic acid molecules (named as TOAA) into Ti<sub>3</sub>CN interlayers (named as Ti<sub>3</sub>CN-TOAA) to form strong amido (HN<img>C=O) bonds. The carbonyl groups of TOAA molecules can not only provide active sites for sodium ions storage, but also inhibit volumetric expansion/shrinkage by providing strain/pillar effects within the Ti<sub>3</sub>CN interlayers, achieving stable and rapid sodium ions storage. Consequently, the interlayer spacing of Ti<sub>3</sub>CN-TOAA (1.42 nm) is enlargered compared with that of Ti<sub>3</sub>CN (1.22 nm), while the sodium ions migration barrier of Ti<sub>3</sub>CN-TOAA is reduced by 0.09 eV Ti<sub>3</sub>CN-TOAA demonstrates superior cycling stability (the capacity retention remains at 83.2% after 2000 cycles at 0.5 A g<sup>-1</sup>) and rate capability (2.5 times the capacity of pristine Ti<sub>3</sub>CN at 5.0 A g<sup>-1</sup>). Significantly, the Ti<sub>3</sub>CN-TOAA||AC sodium ions capacitor (SIC) exhibits excellent cycling stability, retaining 79.3% of its capacity after 8000 cycles at 1.0 A g<sup>-1</sup>. This work presents a novel approach to achieving stable and rapid sodium ions storage by stabilizing layered structure and adjusting interlayer spacing.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"514 ","pages":"Article 145670"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468625000337","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

MXenes is considered as one of the most potential sodium ions storage materials due to its superior metallic conductivity, abundant surface functional groups, extensive specific surface area, and tunable interlayer spacing. Nevertheless, its practical application is hindered by severe volumetric expansion/shrinkage and slow sodium ions diffusion during sodium ions insertion/extraction process. Herein, a novel organic acid molecules bridging strategy is reported to stabilize layered structure and adjust the interlayer spacing of Ti3CN, which is realized by bridging organic acid molecules (named as TOAA) into Ti3CN interlayers (named as Ti3CN-TOAA) to form strong amido (HNC=O) bonds. The carbonyl groups of TOAA molecules can not only provide active sites for sodium ions storage, but also inhibit volumetric expansion/shrinkage by providing strain/pillar effects within the Ti3CN interlayers, achieving stable and rapid sodium ions storage. Consequently, the interlayer spacing of Ti3CN-TOAA (1.42 nm) is enlargered compared with that of Ti3CN (1.22 nm), while the sodium ions migration barrier of Ti3CN-TOAA is reduced by 0.09 eV Ti3CN-TOAA demonstrates superior cycling stability (the capacity retention remains at 83.2% after 2000 cycles at 0.5 A g-1) and rate capability (2.5 times the capacity of pristine Ti3CN at 5.0 A g-1). Significantly, the Ti3CN-TOAA||AC sodium ions capacitor (SIC) exhibits excellent cycling stability, retaining 79.3% of its capacity after 8000 cycles at 1.0 A g-1. This work presents a novel approach to achieving stable and rapid sodium ions storage by stabilizing layered structure and adjusting interlayer spacing.
新型有机分子桥接策略在Ti3CN层间实现稳定和快速的钠离子储存
MXenes具有优异的金属导电性、丰富的表面官能团、广泛的比表面积和可调的层间距,被认为是最有潜力的钠离子存储材料之一。然而,在钠离子插入/提取过程中,体积膨胀/收缩严重,钠离子扩散缓慢,阻碍了其实际应用。本文报道了一种新的有机酸分子桥接策略,通过将有机酸分子(命名为TOAA)桥接到Ti3CN间层(命名为Ti3CN-TOAA)上形成强酰胺(HN-C=O)键来稳定层状结构并调节Ti3CN层间间距。TOAA分子的羰基不仅可以为钠离子的储存提供活性位点,还可以通过在Ti3CN层内提供应变/柱效应来抑制体积膨胀/收缩,实现稳定快速的钠离子储存。结果表明,Ti3CN- toaa的层间距(1.42 nm)比Ti3CN (1.22 nm)增大,而钠离子迁移势垒降低了0.09 eV。Ti3CN- toaa表现出优异的循环稳定性(在0.5 A g-1下循环2000次后容量保持在83.2%)和速率能力(在5.0 A g-1下容量是原始Ti3CN的2.5倍)。值得注意的是,Ti3CN-TOAA||交流钠离子电容器(SIC)表现出优异的循环稳定性,在1.0 A g-1下循环8000次后仍保持79.3%的容量。本研究提出了一种通过稳定层状结构和调节层间间距来实现钠离子稳定快速储存的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
文献相关原料
公司名称
产品信息
阿拉丁
TOAA acid
阿拉丁
NH4F
阿拉丁
p-aminobenzoic acid (AA)
阿拉丁
triquinoyl (TO)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信