Using High-Entropy Configuration Strategy to Design Spinel Lithium Manganate Cathodes with Remarkable Electrochemical Performance

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-01-06 DOI:10.1002/smll.202410999
Yixue Huang, Bao Zhang, Jian zhang, Yongqi Wang, Ling Xia, Mingwu Xiang, Wenchang Han, Jie Li, Ziliang Feng, Yongkang Liu, Enfeng Zhang, Jianguo Duan, Peng Dong, Yingjie Zhang, Yannan Zhang
{"title":"Using High-Entropy Configuration Strategy to Design Spinel Lithium Manganate Cathodes with Remarkable Electrochemical Performance","authors":"Yixue Huang,&nbsp;Bao Zhang,&nbsp;Jian zhang,&nbsp;Yongqi Wang,&nbsp;Ling Xia,&nbsp;Mingwu Xiang,&nbsp;Wenchang Han,&nbsp;Jie Li,&nbsp;Ziliang Feng,&nbsp;Yongkang Liu,&nbsp;Enfeng Zhang,&nbsp;Jianguo Duan,&nbsp;Peng Dong,&nbsp;Yingjie Zhang,&nbsp;Yannan Zhang","doi":"10.1002/smll.202410999","DOIUrl":null,"url":null,"abstract":"<p>Owing to its abundant manganese source, high operating voltage, and good ionic diffusivity attributed to its 3D Li-ion diffusion channels. Spinel LiMn<sub>2</sub>O<sub>4</sub> is considered a promising low-cost positive electrode material in the context of reducing scarce elements such as cobalt and nickel from advanced lithium-ion batteries. However, the rapid capacity degradation and inadequate rate capabilities induced by the Jahn–Teller distortion and the manganese dissolution have limited the large-scale adoption of spinel LiMn<sub>2</sub>O<sub>4</sub> for decades. In this study, LiMn<sub>1.98</sub>Mg<sub>0.005</sub>Ti<sub>0.005</sub>Sb<sub>0.005</sub>Ce<sub>0.005</sub>O<sub>4</sub> spinel positive electrode material (HE-LMO) with remarkable interfacial structural and cycling stability is developed based on a complex concentrated doping strategy. The initial discharge capacity and capacity retention of the electrode of HE-LMO are 111.51 mAh g<sup>−1</sup> and 90.55% after 500 cycles at 1 C. The as-prepared HE-LMO displays favorable cycling stability, significantly surpassing the pristine sample. Furthermore, theoretical calculations strongly support the above finding. HE-LMO has a higher and more continuous density of states at the Fermi energy level and more robust bonded states of the electrons among the Mn─O atom pairs. This research contributes to the field of high-entropy doping modification and establishes a facile strategy for designing advanced spinel manganese-based lithium-ion batteries (LIBs).</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 7","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202410999","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Owing to its abundant manganese source, high operating voltage, and good ionic diffusivity attributed to its 3D Li-ion diffusion channels. Spinel LiMn2O4 is considered a promising low-cost positive electrode material in the context of reducing scarce elements such as cobalt and nickel from advanced lithium-ion batteries. However, the rapid capacity degradation and inadequate rate capabilities induced by the Jahn–Teller distortion and the manganese dissolution have limited the large-scale adoption of spinel LiMn2O4 for decades. In this study, LiMn1.98Mg0.005Ti0.005Sb0.005Ce0.005O4 spinel positive electrode material (HE-LMO) with remarkable interfacial structural and cycling stability is developed based on a complex concentrated doping strategy. The initial discharge capacity and capacity retention of the electrode of HE-LMO are 111.51 mAh g−1 and 90.55% after 500 cycles at 1 C. The as-prepared HE-LMO displays favorable cycling stability, significantly surpassing the pristine sample. Furthermore, theoretical calculations strongly support the above finding. HE-LMO has a higher and more continuous density of states at the Fermi energy level and more robust bonded states of the electrons among the Mn─O atom pairs. This research contributes to the field of high-entropy doping modification and establishes a facile strategy for designing advanced spinel manganese-based lithium-ion batteries (LIBs).

Abstract Image

Abstract Image

利用高熵构型策略设计电化学性能优异的尖晶石锰酸锂阴极
由于其锰源丰富,工作电压高,并且其三维锂离子扩散通道具有良好的离子扩散率。尖晶石LiMn2O4被认为是一种很有前途的低成本正极材料,可以从先进的锂离子电池中还原钴和镍等稀有元素。然而,由于jhn - teller变形和锰溶解导致的容量快速退化和速率能力不足,几十年来限制了尖晶石LiMn2O4的大规模应用。本研究采用复杂的浓掺杂策略,制备出界面结构和循环稳定性良好的尖晶石正极材料(HE-LMO)。在1℃下循环500次后,HE-LMO电极的初始放电容量为111.51 mAh g−1,容量保持率为90.55%,具有良好的循环稳定性,明显优于原始样品。此外,理论计算有力地支持了上述发现。HE-LMO在费米能级上具有更高和更连续的态密度,并且Mn - O原子对之间的电子键态更强健。该研究为高熵掺杂改性领域做出了贡献,并为设计先进尖晶石锰基锂离子电池(LIBs)建立了一种简便的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
文献相关原料
公司名称
产品信息
麦克林
MgO
阿拉丁
Sb<sub>2</sub>O<sub>3</sub>
阿拉丁
MnCO<sub>3</sub>
阿拉丁
Li<sub>2</sub>CO<sub>3</sub>
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信