Gloria Fackelmann, Paolo Manghi, Niccolò Carlino, Vitor Heidrich, Gianmarco Piccinno, Liviana Ricci, Elisa Piperni, Alberto Arrè, Elco Bakker, Alice C. Creedon, Lucy Francis, Joan Capdevila Pujol, Richard Davies, Jonathan Wolf, Kate M. Bermingham, Sarah E. Berry, Tim D. Spector, Francesco Asnicar, Nicola Segata
{"title":"Gut microbiome signatures of vegan, vegetarian and omnivore diets and associated health outcomes across 21,561 individuals","authors":"Gloria Fackelmann, Paolo Manghi, Niccolò Carlino, Vitor Heidrich, Gianmarco Piccinno, Liviana Ricci, Elisa Piperni, Alberto Arrè, Elco Bakker, Alice C. Creedon, Lucy Francis, Joan Capdevila Pujol, Richard Davies, Jonathan Wolf, Kate M. Bermingham, Sarah E. Berry, Tim D. Spector, Francesco Asnicar, Nicola Segata","doi":"10.1038/s41564-024-01870-z","DOIUrl":null,"url":null,"abstract":"<p>As plant-based diets gain traction, interest in their impacts on the gut microbiome is growing. However, little is known about diet-pattern-specific metagenomic profiles across populations. Here we considered 21,561 individuals spanning 5 independent, multinational, human cohorts to map how differences in diet pattern (omnivore, vegetarian and vegan) are reflected in gut microbiomes. Microbial profiles distinguished these common diet patterns well (mean AUC = 0.85). Red meat was a strong driver of omnivore microbiomes, with corresponding signature microbes (for example, <i>Ruminococcus torques</i>, <i>Bilophila wadsworthia</i> and <i>Alistipes putredinis</i>) negatively correlated with host cardiometabolic health. Conversely, vegan signature microbes were correlated with favourable cardiometabolic markers and were enriched in omnivores consuming more plant-based foods. Diet-specific gut microbes partially overlapped with food microbiomes, especially with dairy microbes, for example, <i>Streptococcus thermophilus</i>, and typical soil microbes in vegans. The signatures of common western diet patterns can support future nutritional interventions and epidemiology.</p>","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"20 1","pages":""},"PeriodicalIF":20.5000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41564-024-01870-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
As plant-based diets gain traction, interest in their impacts on the gut microbiome is growing. However, little is known about diet-pattern-specific metagenomic profiles across populations. Here we considered 21,561 individuals spanning 5 independent, multinational, human cohorts to map how differences in diet pattern (omnivore, vegetarian and vegan) are reflected in gut microbiomes. Microbial profiles distinguished these common diet patterns well (mean AUC = 0.85). Red meat was a strong driver of omnivore microbiomes, with corresponding signature microbes (for example, Ruminococcus torques, Bilophila wadsworthia and Alistipes putredinis) negatively correlated with host cardiometabolic health. Conversely, vegan signature microbes were correlated with favourable cardiometabolic markers and were enriched in omnivores consuming more plant-based foods. Diet-specific gut microbes partially overlapped with food microbiomes, especially with dairy microbes, for example, Streptococcus thermophilus, and typical soil microbes in vegans. The signatures of common western diet patterns can support future nutritional interventions and epidemiology.
期刊介绍:
Nature Microbiology aims to cover a comprehensive range of topics related to microorganisms. This includes:
Evolution: The journal is interested in exploring the evolutionary aspects of microorganisms. This may include research on their genetic diversity, adaptation, and speciation over time.
Physiology and cell biology: Nature Microbiology seeks to understand the functions and characteristics of microorganisms at the cellular and physiological levels. This may involve studying their metabolism, growth patterns, and cellular processes.
Interactions: The journal focuses on the interactions microorganisms have with each other, as well as their interactions with hosts or the environment. This encompasses investigations into microbial communities, symbiotic relationships, and microbial responses to different environments.
Societal significance: Nature Microbiology recognizes the societal impact of microorganisms and welcomes studies that explore their practical applications. This may include research on microbial diseases, biotechnology, or environmental remediation.
In summary, Nature Microbiology is interested in research related to the evolution, physiology and cell biology of microorganisms, their interactions, and their societal relevance.