Mix-Charged Nanofiltration Membrane for Efficient Organic Removal from High-Salinity Wastewater: The Role of Charge Spatial Distribution

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Yuling Ren, Pengfei Qi, Yujie Han, Yinhua Wan, Jiuyang Lin, Ming Xie, Xiangrong Chen, Shichao Feng, Jianquan Luo
{"title":"Mix-Charged Nanofiltration Membrane for Efficient Organic Removal from High-Salinity Wastewater: The Role of Charge Spatial Distribution","authors":"Yuling Ren, Pengfei Qi, Yujie Han, Yinhua Wan, Jiuyang Lin, Ming Xie, Xiangrong Chen, Shichao Feng, Jianquan Luo","doi":"10.1021/acs.est.4c10120","DOIUrl":null,"url":null,"abstract":"The efficient removal of organic contaminants from high-salinity wastewater is crucial for resource recovery and achieving zero discharge. Nanofiltration (NF) membranes are effective in separating organic compounds and monovalent salts, but they typically exhibit an excessive rejection of divalent salts. Modifying the charge characteristics of NF membranes can improve salt permeation; however, the role of charge spatial distribution in governing salt transport behavior is not fully understood. In this study, we developed a mix-charged NF membrane with a horizontal charge distribution by employing interfacial polymerization combined with a polyester template etching and solvent-induced polyamine intercalation strategy. The ratio of positive to negative charge domains in the membrane can be precisely controlled by adjusting the aqueous monomer ratio and polyamine modifier type. X-ray photoelectron spectroscopy (XPS) depth profiling and separation layer thickness analysis confirmed the complete penetration of polyamines into the separation layer, providing direct evidence of the formation of horizontally distributed charge domains. This unique charge distribution results in a high charge density and a near-electroneutral surface, which facilitates the permeation of the divalent salts. The size-dependent “plug-in” modification and covalent cross-linking further reduce pore size, enhancing rejection of small organic molecules. Additionally, the membrane demonstrated exceptional antifouling performance against both negatively and positively charged pollutants, attributed to its unique charge distribution and smooth surface. Molecular dynamics (MD) simulations further revealed that weak electrostatic interactions and a tightly bound hydration layer contribute to the membrane’s superior antifouling properties. This work provides valuable insights into the design of NF membranes with tailored microstructures and charge distributions for improved water treatment performance.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"35 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c10120","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The efficient removal of organic contaminants from high-salinity wastewater is crucial for resource recovery and achieving zero discharge. Nanofiltration (NF) membranes are effective in separating organic compounds and monovalent salts, but they typically exhibit an excessive rejection of divalent salts. Modifying the charge characteristics of NF membranes can improve salt permeation; however, the role of charge spatial distribution in governing salt transport behavior is not fully understood. In this study, we developed a mix-charged NF membrane with a horizontal charge distribution by employing interfacial polymerization combined with a polyester template etching and solvent-induced polyamine intercalation strategy. The ratio of positive to negative charge domains in the membrane can be precisely controlled by adjusting the aqueous monomer ratio and polyamine modifier type. X-ray photoelectron spectroscopy (XPS) depth profiling and separation layer thickness analysis confirmed the complete penetration of polyamines into the separation layer, providing direct evidence of the formation of horizontally distributed charge domains. This unique charge distribution results in a high charge density and a near-electroneutral surface, which facilitates the permeation of the divalent salts. The size-dependent “plug-in” modification and covalent cross-linking further reduce pore size, enhancing rejection of small organic molecules. Additionally, the membrane demonstrated exceptional antifouling performance against both negatively and positively charged pollutants, attributed to its unique charge distribution and smooth surface. Molecular dynamics (MD) simulations further revealed that weak electrostatic interactions and a tightly bound hydration layer contribute to the membrane’s superior antifouling properties. This work provides valuable insights into the design of NF membranes with tailored microstructures and charge distributions for improved water treatment performance.

Abstract Image

混合荷电纳滤膜高效去除高盐废水中的有机物:电荷空间分布的作用
高效去除高盐度废水中的有机污染物是实现高盐度废水资源化和零排放的关键。纳滤(NF)膜在分离有机化合物和一价盐方面是有效的,但它们通常表现出对二价盐的过度排斥。改变纳滤膜的电荷特性可以提高盐的渗透性;然而,电荷空间分布对盐运移行为的控制作用尚未完全清楚。在这项研究中,我们采用界面聚合结合聚酯模板蚀刻和溶剂诱导多胺嵌入策略,开发了一种具有水平电荷分布的混合荷电纳滤膜。通过调节水溶液单体比例和多胺改性剂类型,可以精确控制膜内正负电荷域的比例。x射线光电子能谱(XPS)深度剖面和分离层厚度分析证实了多胺完全渗透到分离层中,为水平分布电荷域的形成提供了直接证据。这种独特的电荷分布导致高电荷密度和近电中性表面,这有利于二价盐的渗透。尺寸依赖的“插件”修饰和共价交联进一步减小了孔径,增强了对小有机分子的排斥。此外,由于其独特的电荷分布和光滑的表面,该膜对带负电和带正电的污染物都表现出优异的防污性能。分子动力学(MD)模拟进一步揭示了弱静电相互作用和紧密结合的水合层有助于膜的优异防污性能。这项工作为设计具有定制微结构和电荷分布的NF膜以改善水处理性能提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
文献相关原料
公司名称
产品信息
索莱宝
lysozyme
索莱宝
Bovine serum albumin (BSA)
索莱宝
lysozyme
索莱宝
Bovine serum albumin (BSA)
索莱宝
Lysozyme
索莱宝
Bovine serum albumin (BSA)
索莱宝
Lysozyme
麦克林
Dimethylformamide (DMF)
麦克林
Raffinose
麦克林
Sucrose
麦克林
Glucose
麦克林
Xylose
麦克林
1,2-Propanediol
麦克林
Magnesium chloride (MgCl2)
麦克林
Sodium sulfate (Na2SO4)
麦克林
Toluidine Blue O
麦克林
1,2-propanediol
麦克林
magnesium chloride (MgCl2)
麦克林
Sodium sulfate (Na2SO4)
麦克林
Toluidine Blue O
麦克林
dimethylformamide (DMF)
麦克林
raffinose
麦克林
sucrose
麦克林
glucose
麦克林
xylose
麦克林
1,2-propanediol
麦克林
Sodium sulfate (Na<sub>2</sub>SO<sub>4</sub>)
麦克林
Toluidine Blue O
麦克林
Toluidine Blue O
麦克林
Sodium sulfate (Na2SO4)
麦克林
Magnesium chloride (MgCl2)
麦克林
1,2-Propanediol
麦克林
Xylose
麦克林
Glucose
麦克林
Sucrose
麦克林
Raffinose
麦克林
Dimethylformamide (DMF)
麦克林
xylose
麦克林
glucose
麦克林
sucrose
麦克林
raffinose
麦克林
dimethylformamide (DMF)
阿拉丁
glutaraldehyde (GA)
阿拉丁
tannic acid (TA)
阿拉丁
ethanol
阿拉丁
trimesoyl chloride (TMC)
阿拉丁
Piperazine (PIP)
阿拉丁
glutaraldehyde (GA)
阿拉丁
ferric acetylacetonate (Fe(acac)3)
阿拉丁
tannic acid (TA)
阿拉丁
ethanol
阿拉丁
n-hexane
阿拉丁
trimesoyl chloride (TMC)
阿拉丁
Piperazine (PIP)
阿拉丁
Piperazine (PIP)
阿拉丁
Glutaraldehyde (GA)
阿拉丁
Ferric acetylacetonate (Fe(acac)3)
阿拉丁
Tannic acid (TA)
阿拉丁
Ethanol
阿拉丁
n-hexane
阿拉丁
Trimesoyl chloride (TMC)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信