Safety and immunogenicity of an optimized self-replicating RNA platform for low dose or single dose vaccine applications: a randomized, open label Phase I study in healthy volunteers

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Christian J. Maine, Shigeki J. Miyake-Stoner, Darina S. Spasova, Gaelle Picarda, Annie C. Chou, Emily D. Brand, Melanie D. Olesiuk, Christine C. Domingo, Hunter J. Little, Thomas T. Goodman, Jacqueline L. Posy, Jasmin Gonzalez, Terrina L. Bayone, Jessica Sparks, Ebony N. Gary, Zhi Xiang, Nicholas J. Tursi, Casey E. Hojecki, Hildegund C. J. Ertl, David B. Weiner, Irafasha C. Casmil, Anna K. Blakney, Brandon Essink, Guillermo Somodevilla, Nathaniel S. Wang, Andrew J. Geall, Zelanna Goldberg, Parinaz Aliahmad
{"title":"Safety and immunogenicity of an optimized self-replicating RNA platform for low dose or single dose vaccine applications: a randomized, open label Phase I study in healthy volunteers","authors":"Christian J. Maine, Shigeki J. Miyake-Stoner, Darina S. Spasova, Gaelle Picarda, Annie C. Chou, Emily D. Brand, Melanie D. Olesiuk, Christine C. Domingo, Hunter J. Little, Thomas T. Goodman, Jacqueline L. Posy, Jasmin Gonzalez, Terrina L. Bayone, Jessica Sparks, Ebony N. Gary, Zhi Xiang, Nicholas J. Tursi, Casey E. Hojecki, Hildegund C. J. Ertl, David B. Weiner, Irafasha C. Casmil, Anna K. Blakney, Brandon Essink, Guillermo Somodevilla, Nathaniel S. Wang, Andrew J. Geall, Zelanna Goldberg, Parinaz Aliahmad","doi":"10.1038/s41467-025-55843-9","DOIUrl":null,"url":null,"abstract":"<p>Self-replicating RNA (srRNA) technology, in comparison to mRNA vaccines, has shown dose-sparing by approximately 10-fold and more durable immune responses. However, no improvements are observed in the adverse events profile. Here, we develop an srRNA vaccine platform with optimized non-coding regions and demonstrate immunogenicity and safety in preclinical and clinical development. Optimized srRNA vaccines generate protective immunity (according to the WHO defined thresholds) at doses up to 1,000,000-fold lower than mRNA in female mouse models of influenza and rabies. Clinically, safety and immunogenicity of RBI-4000, an srRNA vector encoding the rabies glycoprotein, was evaluated in a Phase I study (NCT06048770). RBI-4000 was able to elicit de novo protective immunity in the majority of healthy participants when administered at a dose of 0.1, 1, or 10 microgram (71%, 94%, 100%, respectively) in a prime-boost schedule. Similarly, we observe immunity above the WHO benchmark of protection following a single administration in most participants at both 1 and 10 microgram doses. There are no serious adverse events reported across all cohorts. These data establish the high therapeutic index of optimized srRNA vectors, demonstrating feasibility of both low dose and single dose approaches for vaccine applications.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"2 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-55843-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Self-replicating RNA (srRNA) technology, in comparison to mRNA vaccines, has shown dose-sparing by approximately 10-fold and more durable immune responses. However, no improvements are observed in the adverse events profile. Here, we develop an srRNA vaccine platform with optimized non-coding regions and demonstrate immunogenicity and safety in preclinical and clinical development. Optimized srRNA vaccines generate protective immunity (according to the WHO defined thresholds) at doses up to 1,000,000-fold lower than mRNA in female mouse models of influenza and rabies. Clinically, safety and immunogenicity of RBI-4000, an srRNA vector encoding the rabies glycoprotein, was evaluated in a Phase I study (NCT06048770). RBI-4000 was able to elicit de novo protective immunity in the majority of healthy participants when administered at a dose of 0.1, 1, or 10 microgram (71%, 94%, 100%, respectively) in a prime-boost schedule. Similarly, we observe immunity above the WHO benchmark of protection following a single administration in most participants at both 1 and 10 microgram doses. There are no serious adverse events reported across all cohorts. These data establish the high therapeutic index of optimized srRNA vectors, demonstrating feasibility of both low dose and single dose approaches for vaccine applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信