Harnessing unlabeled data: Enhanced rare earth component content prediction based on BiLSTM-Deep autoencoder.

Wenhao Dai, Rongxiu Lu, Jianyong Zhu, Pengzhan Chen, Hui Yang
{"title":"Harnessing unlabeled data: Enhanced rare earth component content prediction based on BiLSTM-Deep autoencoder.","authors":"Wenhao Dai, Rongxiu Lu, Jianyong Zhu, Pengzhan Chen, Hui Yang","doi":"10.1016/j.isatra.2024.12.027","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional data-driven models for predicting rare earth component content are primarily developed by relying on supervised learning methods, which suffer from limitations such as a lack of labeled data, lagging, and poor usage of a major amount of unlabeled data. This paper proposes a novel prediction approach based on the BiLSTM-Deep autoencoder enhanced traditional LSSVM algorithm, termed BiLSTM-DeepAE-LSSVM. This approach thoroughly exploits the implicit information contained in copious amounts of unlabeled data in the rare earth production process, thereby improving the traditional supervised prediction method and increasing the accuracy of component content predictions. Initially, a BiLSTM autoencoder is established for unsupervised training on the rare earth production process data, enabling the extraction of inherent time series characteristics. Subsequently, boolean vectors are introduced in the Deep autoencoder training process to perform masking operations on the input data, simulating scenarios with noise and missing data. This is facilitated by their adherence to Bernoulli distributions, which allow for the random setting of certain input vector dimensions to zero. Additionally, the Deep autoencoder is capable of extracting high-dimensional implicit features from the data. After that, the conventional supervised prediction technique, least squares support vector machine (LSSVM), is fused with the implicit characteristics derived from the well-constructed BiLSTM-Deep autoencoder, culminating in the creation of a prediction model for rare earth component content. Ultimately, the simulation verification using LaCe/PrNd extraction field data demonstrates the effectiveness of the proposed approach in harnessing substantial quantities of unlabeled data from the rare earth extraction production process, thereby bolstering the accuracy of model predictions.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2024.12.027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional data-driven models for predicting rare earth component content are primarily developed by relying on supervised learning methods, which suffer from limitations such as a lack of labeled data, lagging, and poor usage of a major amount of unlabeled data. This paper proposes a novel prediction approach based on the BiLSTM-Deep autoencoder enhanced traditional LSSVM algorithm, termed BiLSTM-DeepAE-LSSVM. This approach thoroughly exploits the implicit information contained in copious amounts of unlabeled data in the rare earth production process, thereby improving the traditional supervised prediction method and increasing the accuracy of component content predictions. Initially, a BiLSTM autoencoder is established for unsupervised training on the rare earth production process data, enabling the extraction of inherent time series characteristics. Subsequently, boolean vectors are introduced in the Deep autoencoder training process to perform masking operations on the input data, simulating scenarios with noise and missing data. This is facilitated by their adherence to Bernoulli distributions, which allow for the random setting of certain input vector dimensions to zero. Additionally, the Deep autoencoder is capable of extracting high-dimensional implicit features from the data. After that, the conventional supervised prediction technique, least squares support vector machine (LSSVM), is fused with the implicit characteristics derived from the well-constructed BiLSTM-Deep autoencoder, culminating in the creation of a prediction model for rare earth component content. Ultimately, the simulation verification using LaCe/PrNd extraction field data demonstrates the effectiveness of the proposed approach in harnessing substantial quantities of unlabeled data from the rare earth extraction production process, thereby bolstering the accuracy of model predictions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信