Autologous Neurosensory Retinal Flap Transplantation in a Porcine Model of Retinal Hole.

IF 3.2 Q1 OPHTHALMOLOGY
Ophthalmology science Pub Date : 2024-11-05 eCollection Date: 2025-03-01 DOI:10.1016/j.xops.2024.100644
Madeline E Olufsen, Jens Hannibal, Nina B Soerensen, Anders T Christiansen, Ulrik C Christensen, Grazia Pertile, David H Steel, Steffen Heegaard, Jens F Kiilgaard
{"title":"Autologous Neurosensory Retinal Flap Transplantation in a Porcine Model of Retinal Hole.","authors":"Madeline E Olufsen, Jens Hannibal, Nina B Soerensen, Anders T Christiansen, Ulrik C Christensen, Grazia Pertile, David H Steel, Steffen Heegaard, Jens F Kiilgaard","doi":"10.1016/j.xops.2024.100644","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Autologous retinal transplantation has been successfully employed in the treatment of large and myopic macular holes that are refractory to standard surgical treatments. Patients transplanted with a peripheral neurosensory retinal graft have shown unexpected improvements in visual acuity. The study aims to investigate if neural integration of the graft takes place in a porcine model of retinal hole.</p><p><strong>Design: </strong>Experimental animal study.</p><p><strong>Subjects: </strong>Left eyes of 10 Danish landrace pigs.</p><p><strong>Methods: </strong>The pigs underwent vitrectomy under general anesthesia, and a subretinal bleb was created within the visual streak on both sites of the optic disc. A retinal hole, approximately 1900 to 4000 microns in size, was cut temporally using a vitrector. A graft of matching size was harvested from the nasal retina. The graft was gently moved toward the retinal hole under perfluoro-n-octane and placed within it. Endolaser was applied around the donor site, and either air or oil tamponade was used. OCT and color fundus photography were performed 2 and 6 weeks after surgery. At the end of follow-up, the eyes were enucleated for histological examination, including immunohistochemical analysis with antibodies against retinal glial cells, photoreceptors, and inner retinal neurons.</p><p><strong>Main outcome measures: </strong>The primary outcome measures were the morphology of the graft and the junctional area between the host and the graft.</p><p><strong>Results: </strong>Retinal hole closure was achieved in 9 of 10 cases, with the graft remaining in situ in 6 cases. In 4 cases, OCT scans indicated preservation of the outer retinal layers, and in 2 of these cases, there was apparent integration with the adjacent host retina. Corresponding histology confirmed the preservation of the photoreceptor layer in 3 cases, but there was no evidence of graft integration with degeneration of the inner retina in all cases. The distance between the margins of the retinal hole decreased during follow-up, suggesting that the graft contracts and drags the surrounding retina toward the center.</p><p><strong>Conclusions: </strong>The outer retina of a retinal graft can be preserved, while the inner retina degenerates. No evidence of neuroretinal integration of the graft was observed. The retinal graft serves as a scaffold, promoting the centripetal migration of the edges of the hole, resulting in closure of large retinal holes.</p><p><strong>Financial disclosures: </strong>Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.</p>","PeriodicalId":74363,"journal":{"name":"Ophthalmology science","volume":"5 2","pages":"100644"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699102/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ophthalmology science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xops.2024.100644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Autologous retinal transplantation has been successfully employed in the treatment of large and myopic macular holes that are refractory to standard surgical treatments. Patients transplanted with a peripheral neurosensory retinal graft have shown unexpected improvements in visual acuity. The study aims to investigate if neural integration of the graft takes place in a porcine model of retinal hole.

Design: Experimental animal study.

Subjects: Left eyes of 10 Danish landrace pigs.

Methods: The pigs underwent vitrectomy under general anesthesia, and a subretinal bleb was created within the visual streak on both sites of the optic disc. A retinal hole, approximately 1900 to 4000 microns in size, was cut temporally using a vitrector. A graft of matching size was harvested from the nasal retina. The graft was gently moved toward the retinal hole under perfluoro-n-octane and placed within it. Endolaser was applied around the donor site, and either air or oil tamponade was used. OCT and color fundus photography were performed 2 and 6 weeks after surgery. At the end of follow-up, the eyes were enucleated for histological examination, including immunohistochemical analysis with antibodies against retinal glial cells, photoreceptors, and inner retinal neurons.

Main outcome measures: The primary outcome measures were the morphology of the graft and the junctional area between the host and the graft.

Results: Retinal hole closure was achieved in 9 of 10 cases, with the graft remaining in situ in 6 cases. In 4 cases, OCT scans indicated preservation of the outer retinal layers, and in 2 of these cases, there was apparent integration with the adjacent host retina. Corresponding histology confirmed the preservation of the photoreceptor layer in 3 cases, but there was no evidence of graft integration with degeneration of the inner retina in all cases. The distance between the margins of the retinal hole decreased during follow-up, suggesting that the graft contracts and drags the surrounding retina toward the center.

Conclusions: The outer retina of a retinal graft can be preserved, while the inner retina degenerates. No evidence of neuroretinal integration of the graft was observed. The retinal graft serves as a scaffold, promoting the centripetal migration of the edges of the hole, resulting in closure of large retinal holes.

Financial disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Ophthalmology science
Ophthalmology science Ophthalmology
CiteScore
3.40
自引率
0.00%
发文量
0
审稿时长
89 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信