Madeline E Olufsen, Jens Hannibal, Nina B Soerensen, Anders T Christiansen, Ulrik C Christensen, Grazia Pertile, David H Steel, Steffen Heegaard, Jens F Kiilgaard
{"title":"Autologous Neurosensory Retinal Flap Transplantation in a Porcine Model of Retinal Hole.","authors":"Madeline E Olufsen, Jens Hannibal, Nina B Soerensen, Anders T Christiansen, Ulrik C Christensen, Grazia Pertile, David H Steel, Steffen Heegaard, Jens F Kiilgaard","doi":"10.1016/j.xops.2024.100644","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Autologous retinal transplantation has been successfully employed in the treatment of large and myopic macular holes that are refractory to standard surgical treatments. Patients transplanted with a peripheral neurosensory retinal graft have shown unexpected improvements in visual acuity. The study aims to investigate if neural integration of the graft takes place in a porcine model of retinal hole.</p><p><strong>Design: </strong>Experimental animal study.</p><p><strong>Subjects: </strong>Left eyes of 10 Danish landrace pigs.</p><p><strong>Methods: </strong>The pigs underwent vitrectomy under general anesthesia, and a subretinal bleb was created within the visual streak on both sites of the optic disc. A retinal hole, approximately 1900 to 4000 microns in size, was cut temporally using a vitrector. A graft of matching size was harvested from the nasal retina. The graft was gently moved toward the retinal hole under perfluoro-n-octane and placed within it. Endolaser was applied around the donor site, and either air or oil tamponade was used. OCT and color fundus photography were performed 2 and 6 weeks after surgery. At the end of follow-up, the eyes were enucleated for histological examination, including immunohistochemical analysis with antibodies against retinal glial cells, photoreceptors, and inner retinal neurons.</p><p><strong>Main outcome measures: </strong>The primary outcome measures were the morphology of the graft and the junctional area between the host and the graft.</p><p><strong>Results: </strong>Retinal hole closure was achieved in 9 of 10 cases, with the graft remaining in situ in 6 cases. In 4 cases, OCT scans indicated preservation of the outer retinal layers, and in 2 of these cases, there was apparent integration with the adjacent host retina. Corresponding histology confirmed the preservation of the photoreceptor layer in 3 cases, but there was no evidence of graft integration with degeneration of the inner retina in all cases. The distance between the margins of the retinal hole decreased during follow-up, suggesting that the graft contracts and drags the surrounding retina toward the center.</p><p><strong>Conclusions: </strong>The outer retina of a retinal graft can be preserved, while the inner retina degenerates. No evidence of neuroretinal integration of the graft was observed. The retinal graft serves as a scaffold, promoting the centripetal migration of the edges of the hole, resulting in closure of large retinal holes.</p><p><strong>Financial disclosures: </strong>Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.</p>","PeriodicalId":74363,"journal":{"name":"Ophthalmology science","volume":"5 2","pages":"100644"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699102/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ophthalmology science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xops.2024.100644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Autologous retinal transplantation has been successfully employed in the treatment of large and myopic macular holes that are refractory to standard surgical treatments. Patients transplanted with a peripheral neurosensory retinal graft have shown unexpected improvements in visual acuity. The study aims to investigate if neural integration of the graft takes place in a porcine model of retinal hole.
Design: Experimental animal study.
Subjects: Left eyes of 10 Danish landrace pigs.
Methods: The pigs underwent vitrectomy under general anesthesia, and a subretinal bleb was created within the visual streak on both sites of the optic disc. A retinal hole, approximately 1900 to 4000 microns in size, was cut temporally using a vitrector. A graft of matching size was harvested from the nasal retina. The graft was gently moved toward the retinal hole under perfluoro-n-octane and placed within it. Endolaser was applied around the donor site, and either air or oil tamponade was used. OCT and color fundus photography were performed 2 and 6 weeks after surgery. At the end of follow-up, the eyes were enucleated for histological examination, including immunohistochemical analysis with antibodies against retinal glial cells, photoreceptors, and inner retinal neurons.
Main outcome measures: The primary outcome measures were the morphology of the graft and the junctional area between the host and the graft.
Results: Retinal hole closure was achieved in 9 of 10 cases, with the graft remaining in situ in 6 cases. In 4 cases, OCT scans indicated preservation of the outer retinal layers, and in 2 of these cases, there was apparent integration with the adjacent host retina. Corresponding histology confirmed the preservation of the photoreceptor layer in 3 cases, but there was no evidence of graft integration with degeneration of the inner retina in all cases. The distance between the margins of the retinal hole decreased during follow-up, suggesting that the graft contracts and drags the surrounding retina toward the center.
Conclusions: The outer retina of a retinal graft can be preserved, while the inner retina degenerates. No evidence of neuroretinal integration of the graft was observed. The retinal graft serves as a scaffold, promoting the centripetal migration of the edges of the hole, resulting in closure of large retinal holes.
Financial disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.