{"title":"Addressing the unmet need in NSCLC progression with advances in second-line therapeutics.","authors":"Kinsley Wang, Alexis Leyba, Robert Hsu","doi":"10.37349/etat.2024.00277","DOIUrl":null,"url":null,"abstract":"<p><p>Lung cancer is the leading cause of cancer mortality globally, with non-small cell lung cancer (NSCLC) accounting for 85% of cases. Despite advancements in first-line treatments such as immunotherapy and targeted therapies, resistance to these treatments is common, creating a significant unmet need for effective second-line therapies. This review evaluates current and emerging second-line therapeutic options for advanced or metastatic NSCLC, focusing on their efficacy and potential to improve patient outcomes. Anti-angiogenic drugs like ramucirumab combined with chemotherapy, particularly docetaxel, have shown moderate success. Antibody-drug conjugates (ADCs) targeting specific tumor antigens offer a promising avenue for targeted therapy, while chimeric antigen receptor (CAR)-T cell therapy and T-cell receptor therapy leverage the patient's immune system to combat cancer more effectively. mRNA vaccines, although in early stages, show potential for inducing robust immune responses against cancer-specific antigens. Building on this foundation, recent advancements in molecular testing and the exploration of the tumor microenvironment are opening new therapeutic avenues, further enhancing the potential for personalized second-line treatments in NSCLC. While ADCs and bispecific antibodies are gaining traction, more precise biomarkers are needed to optimize treatment response. Regular monitoring through techniques like liquid biopsies allows real-time tracking of mutations such as EGFR T790M, enabling timely therapeutic adjustments. Additionally, the role of neutrophils and macrophages in the tumor microenvironment is increasingly being recognized as a potential therapeutic avenue, with Smad3 emerging as a key target. Further research into drug sequencing, toxicity management, and biomarker development remains crucial to improving NSCLC treatment outcomes.</p>","PeriodicalId":73002,"journal":{"name":"Exploration of targeted anti-tumor therapy","volume":"5 6","pages":"1297-1320"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700623/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exploration of targeted anti-tumor therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37349/etat.2024.00277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Lung cancer is the leading cause of cancer mortality globally, with non-small cell lung cancer (NSCLC) accounting for 85% of cases. Despite advancements in first-line treatments such as immunotherapy and targeted therapies, resistance to these treatments is common, creating a significant unmet need for effective second-line therapies. This review evaluates current and emerging second-line therapeutic options for advanced or metastatic NSCLC, focusing on their efficacy and potential to improve patient outcomes. Anti-angiogenic drugs like ramucirumab combined with chemotherapy, particularly docetaxel, have shown moderate success. Antibody-drug conjugates (ADCs) targeting specific tumor antigens offer a promising avenue for targeted therapy, while chimeric antigen receptor (CAR)-T cell therapy and T-cell receptor therapy leverage the patient's immune system to combat cancer more effectively. mRNA vaccines, although in early stages, show potential for inducing robust immune responses against cancer-specific antigens. Building on this foundation, recent advancements in molecular testing and the exploration of the tumor microenvironment are opening new therapeutic avenues, further enhancing the potential for personalized second-line treatments in NSCLC. While ADCs and bispecific antibodies are gaining traction, more precise biomarkers are needed to optimize treatment response. Regular monitoring through techniques like liquid biopsies allows real-time tracking of mutations such as EGFR T790M, enabling timely therapeutic adjustments. Additionally, the role of neutrophils and macrophages in the tumor microenvironment is increasingly being recognized as a potential therapeutic avenue, with Smad3 emerging as a key target. Further research into drug sequencing, toxicity management, and biomarker development remains crucial to improving NSCLC treatment outcomes.