Studies on the electrical and optical conductivity of barium-nickel ferrite nanoparticles doped with Zn

IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sadiq H. Khoreem, A. H. AL-Hammadi
{"title":"Studies on the electrical and optical conductivity of barium-nickel ferrite nanoparticles doped with Zn","authors":"Sadiq H. Khoreem,&nbsp;A. H. AL-Hammadi","doi":"10.1186/s11671-024-04180-9","DOIUrl":null,"url":null,"abstract":"<div><p>The study highlights the significant effects of Zn ions concentration on the optical properties of BaNi<sub>2-x</sub>Zn<sub>x</sub>Fe<sub>16</sub>O<sub>27</sub> ferrites, emphasizing the tunability of the band gap through Zn doping and explores their potential to enhance their optical properties. The barium-nickel ferrite powder, with the composition BaNi<sub>2−x</sub>Zn<sub>x</sub>Fe<sub>16</sub>O<sub>27</sub>, was synthesized using the ceramic method. The effects of Zn doping were analyzed using X-ray diffraction (XRD) and UV‒visible (UV–Vis) spectroscopy. XRD confirmed a pure single-phase W-type hexagonal structure, with an increase in both grain size and lattice constant proportional to the Zn content. The optical properties were assessed through UV‒visible spectroscopy, revealing an increaseing of the band gap with increasing Zn concentration, confirming material’s semiconducting behavior.All optical constants, exhibited consistent variation with increasing Zn substitution.. Additionally, both electrical and optical conductivities increased with rising photon energy, while the conductivity peak decreased with higher Zn content. The electric susceptibility was found to decrease as Zn concentration increased. The results indicate that Zn doping leads to significant changes in lattice parameters, crystallite size, and bandgap energy, suggesting potential applications in optoelectronics, photonics devices, and energy storage.\"</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-024-04180-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-024-04180-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The study highlights the significant effects of Zn ions concentration on the optical properties of BaNi2-xZnxFe16O27 ferrites, emphasizing the tunability of the band gap through Zn doping and explores their potential to enhance their optical properties. The barium-nickel ferrite powder, with the composition BaNi2−xZnxFe16O27, was synthesized using the ceramic method. The effects of Zn doping were analyzed using X-ray diffraction (XRD) and UV‒visible (UV–Vis) spectroscopy. XRD confirmed a pure single-phase W-type hexagonal structure, with an increase in both grain size and lattice constant proportional to the Zn content. The optical properties were assessed through UV‒visible spectroscopy, revealing an increaseing of the band gap with increasing Zn concentration, confirming material’s semiconducting behavior.All optical constants, exhibited consistent variation with increasing Zn substitution.. Additionally, both electrical and optical conductivities increased with rising photon energy, while the conductivity peak decreased with higher Zn content. The electric susceptibility was found to decrease as Zn concentration increased. The results indicate that Zn doping leads to significant changes in lattice parameters, crystallite size, and bandgap energy, suggesting potential applications in optoelectronics, photonics devices, and energy storage."

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters 工程技术-材料科学:综合
CiteScore
11.30
自引率
0.00%
发文量
110
审稿时长
48 days
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信