Silencing FOXA1 suppresses inflammation caused by LPS and promotes osteogenic differentiation of periodontal ligament stem cells through the TLR4/MyD88/NF-κB pathway.

0 MEDICINE, RESEARCH & EXPERIMENTAL
Miao He, Yangdong Lin
{"title":"Silencing FOXA1 suppresses inflammation caused by LPS and promotes osteogenic differentiation of periodontal ligament stem cells through the TLR4/MyD88/NF-κB pathway.","authors":"Miao He, Yangdong Lin","doi":"10.17305/bb.2024.11367","DOIUrl":null,"url":null,"abstract":"<p><p>Human periodontal ligament stem cells (hPDLSCs) play a critical role in the regeneration of periodontal tissue. Forkhead box protein A1 (FOXA1) has been implicated in the inflammatory mechanisms of various diseases. However, the role of FOXA1 in periodontal inflammation and its effect on the osteogenic differentiation of hPDLSCs remains unclear. In this study, healthy tooth root-derived hPDLSCs were isolated, and flow cytometry was used to detect cell surface markers. Western blot and immunofluorescence analyses were performed to assess FOXA1 levels in different tissues. The levels of inflammatory factors were measured using Western blot and ELISA kits. Alkaline phosphatase (ALP) staining, alizarin red S staining, and Western blot were employed to evaluate the impact of FOXA1 silencing on the osteogenic differentiation of hPDLSCs. Finally, the protein levels in the Toll-like receptor 4 (TLR4)/Myeloid differentiation factor-88 (MyD88)/NF-κB pathway were analyzed using Western blot. Results showed that periodontal membrane tissues from patients with periodontitis exhibited a marked increase in FOXA1 levels. Lipopolysaccharide (LPS) treatment significantly upregulated FOXA1 expression in hPDLSCs, elevated inflammatory factor levels, and inhibited osteogenic differentiation. However, silencing FOXA1 mitigated the effects of LPS. Furthermore, LPS treatment activated the TLR4/MyD88/NF-κB pathway, while FOXA1 silencing impeded this activation. Notably, the application of the TLR4 agonist CRX-527 reversed the inhibitory effects of FOXA1 silencing on LPS-induced responses. In summary, silencing FOXA1 reduced cellular inflammation by inhibiting the TLR4/MyD88/NF-κB pathway and alleviated the suppressive effects of LPS on the osteogenic differentiation of hPDLSCs.</p>","PeriodicalId":72398,"journal":{"name":"Biomolecules & biomedicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17305/bb.2024.11367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Human periodontal ligament stem cells (hPDLSCs) play a critical role in the regeneration of periodontal tissue. Forkhead box protein A1 (FOXA1) has been implicated in the inflammatory mechanisms of various diseases. However, the role of FOXA1 in periodontal inflammation and its effect on the osteogenic differentiation of hPDLSCs remains unclear. In this study, healthy tooth root-derived hPDLSCs were isolated, and flow cytometry was used to detect cell surface markers. Western blot and immunofluorescence analyses were performed to assess FOXA1 levels in different tissues. The levels of inflammatory factors were measured using Western blot and ELISA kits. Alkaline phosphatase (ALP) staining, alizarin red S staining, and Western blot were employed to evaluate the impact of FOXA1 silencing on the osteogenic differentiation of hPDLSCs. Finally, the protein levels in the Toll-like receptor 4 (TLR4)/Myeloid differentiation factor-88 (MyD88)/NF-κB pathway were analyzed using Western blot. Results showed that periodontal membrane tissues from patients with periodontitis exhibited a marked increase in FOXA1 levels. Lipopolysaccharide (LPS) treatment significantly upregulated FOXA1 expression in hPDLSCs, elevated inflammatory factor levels, and inhibited osteogenic differentiation. However, silencing FOXA1 mitigated the effects of LPS. Furthermore, LPS treatment activated the TLR4/MyD88/NF-κB pathway, while FOXA1 silencing impeded this activation. Notably, the application of the TLR4 agonist CRX-527 reversed the inhibitory effects of FOXA1 silencing on LPS-induced responses. In summary, silencing FOXA1 reduced cellular inflammation by inhibiting the TLR4/MyD88/NF-κB pathway and alleviated the suppressive effects of LPS on the osteogenic differentiation of hPDLSCs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信