{"title":"Sound Touch Viscosity (STVi) for Thyroid Gland Evaluation in Healthy Individuals: A Pilot Study : STVi for Thyroid Gland Evaluation.","authors":"Feng Mao, Yuemingming Jiang, Yunzhong Wang, Zhenbin Xu, Zhuo Wei, Xueli Zhu, Libin Chen, Shengmin Zhang","doi":"10.2174/0115734056335791241202115022","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This prospective study aimed to establish the typical viscosity range of the thyroid gland in healthy individuals using a new method called the Sound Touch Viscosity (STVi) technique with a linear array transducer.</p><p><strong>Methods: </strong>Seventy-eight healthy volunteers were enrolled between March, 2023 and April, 2023. Thyroid viscosity was measured using the Resona R9 ultrasound system equipped with a linear array transducer (L15-3WU). Each patient had three valid viscosity measurements taken for each thyroid lobe, and the average values were analyzed. Thyroid gland stiffness was measured and analyzed simultaneously.</p><p><strong>Results: </strong>The study included 51 women and 27 men with an average age of 48 years. The mean viscosity measurement for a normal thyroid gland was 1.10 ± 0.41 Pa.s (ranging from 0.38 to 2.25 Pa.s). There were no significant differences in viscosity between the left and right lobes of the thyroid gland. We found no significant variations in viscosity based on gender, age, or body mass index (BMI). There was a notable positive correlation between thyroid viscosity and stiffness measurements (r = 0.717, p < 0.001).</p><p><strong>Conclusion: </strong>Our findings suggest that STVi is a highly reliable method for assessing the thyroid. This technique holds promise as a new, non-invasive approach to evaluating thyroid parenchyma viscosity.</p>","PeriodicalId":54215,"journal":{"name":"Current Medical Imaging Reviews","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Medical Imaging Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734056335791241202115022","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: This prospective study aimed to establish the typical viscosity range of the thyroid gland in healthy individuals using a new method called the Sound Touch Viscosity (STVi) technique with a linear array transducer.
Methods: Seventy-eight healthy volunteers were enrolled between March, 2023 and April, 2023. Thyroid viscosity was measured using the Resona R9 ultrasound system equipped with a linear array transducer (L15-3WU). Each patient had three valid viscosity measurements taken for each thyroid lobe, and the average values were analyzed. Thyroid gland stiffness was measured and analyzed simultaneously.
Results: The study included 51 women and 27 men with an average age of 48 years. The mean viscosity measurement for a normal thyroid gland was 1.10 ± 0.41 Pa.s (ranging from 0.38 to 2.25 Pa.s). There were no significant differences in viscosity between the left and right lobes of the thyroid gland. We found no significant variations in viscosity based on gender, age, or body mass index (BMI). There was a notable positive correlation between thyroid viscosity and stiffness measurements (r = 0.717, p < 0.001).
Conclusion: Our findings suggest that STVi is a highly reliable method for assessing the thyroid. This technique holds promise as a new, non-invasive approach to evaluating thyroid parenchyma viscosity.
期刊介绍:
Current Medical Imaging Reviews publishes frontier review articles, original research articles, drug clinical trial studies and guest edited thematic issues on all the latest advances on medical imaging dedicated to clinical research. All relevant areas are covered by the journal, including advances in the diagnosis, instrumentation and therapeutic applications related to all modern medical imaging techniques.
The journal is essential reading for all clinicians and researchers involved in medical imaging and diagnosis.