Dongmin Chen , Xiaosheng Sheng , Huili Li , Qishu Jin , Ruqi Wang , Yuanzheng Qiu , Lefeng Su , Jinfeng Xu , Jiang Chang , Yumei Que , Chen Yang
{"title":"Biodegradable copper-containing mesoporous microspheres loaded with ginsenoside Rb1 for infarcted heart repair","authors":"Dongmin Chen , Xiaosheng Sheng , Huili Li , Qishu Jin , Ruqi Wang , Yuanzheng Qiu , Lefeng Su , Jinfeng Xu , Jiang Chang , Yumei Que , Chen Yang","doi":"10.1016/j.bioadv.2024.214172","DOIUrl":null,"url":null,"abstract":"<div><div>The current unavailability of efficient myocardial repair therapies constitutes a significant bottleneck in the clinical management of myocardial infarction (MI). Ginsenoside Rb1 (GRb1) has emerged as a compound with potential benefits in safeguarding myocardial cells and facilitating the regeneration of myocardial tissue. However, its efficacy in treating MI-related ischemic conditions is hampered by its low bioavailability and inadequate angiogenic properties. In this study, the therapeutic potential of GRb1 is enhanced by a mesoporous basic copper carbonate (BCC) microsphere due to its excellent drug delivery capability and steady angiogenic degradation products (copper ions, Cu<sup>2+</sup>). The cell experiments revealed that GRb1 and Cu<sup>2+</sup> could generate synergistic impacts on anti-cardiomyocyte apoptosis and endothelial cell angiogenesis, while a mouse model of MI illustrated that GRb1 loaded BCC (BCC@GRb1) could significantly enhance cardiac function, diminish the area of infarction and myocardial hypertrophy, reduce cardiomyocyte apoptosis, and augment vascularization within myocardial tissue. This investigation is pioneering in demonstrating the beneficial outcomes of combining drugs with bioactive carriers in myocardial regeneration and introduces a novel, precisely engineered drug delivery system as a potential therapeutic strategy for ischemic heart disease.</div></div>","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"169 ","pages":"Article 214172"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science & Engineering C-Materials for Biological Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772950824004151","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The current unavailability of efficient myocardial repair therapies constitutes a significant bottleneck in the clinical management of myocardial infarction (MI). Ginsenoside Rb1 (GRb1) has emerged as a compound with potential benefits in safeguarding myocardial cells and facilitating the regeneration of myocardial tissue. However, its efficacy in treating MI-related ischemic conditions is hampered by its low bioavailability and inadequate angiogenic properties. In this study, the therapeutic potential of GRb1 is enhanced by a mesoporous basic copper carbonate (BCC) microsphere due to its excellent drug delivery capability and steady angiogenic degradation products (copper ions, Cu2+). The cell experiments revealed that GRb1 and Cu2+ could generate synergistic impacts on anti-cardiomyocyte apoptosis and endothelial cell angiogenesis, while a mouse model of MI illustrated that GRb1 loaded BCC (BCC@GRb1) could significantly enhance cardiac function, diminish the area of infarction and myocardial hypertrophy, reduce cardiomyocyte apoptosis, and augment vascularization within myocardial tissue. This investigation is pioneering in demonstrating the beneficial outcomes of combining drugs with bioactive carriers in myocardial regeneration and introduces a novel, precisely engineered drug delivery system as a potential therapeutic strategy for ischemic heart disease.
期刊介绍:
Biomaterials Advances, previously known as Materials Science and Engineering: C-Materials for Biological Applications (P-ISSN: 0928-4931, E-ISSN: 1873-0191). Includes topics at the interface of the biomedical sciences and materials engineering. These topics include:
• Bioinspired and biomimetic materials for medical applications
• Materials of biological origin for medical applications
• Materials for "active" medical applications
• Self-assembling and self-healing materials for medical applications
• "Smart" (i.e., stimulus-response) materials for medical applications
• Ceramic, metallic, polymeric, and composite materials for medical applications
• Materials for in vivo sensing
• Materials for in vivo imaging
• Materials for delivery of pharmacologic agents and vaccines
• Novel approaches for characterizing and modeling materials for medical applications
Manuscripts on biological topics without a materials science component, or manuscripts on materials science without biological applications, will not be considered for publication in Materials Science and Engineering C. New submissions are first assessed for language, scope and originality (plagiarism check) and can be desk rejected before review if they need English language improvements, are out of scope or present excessive duplication with published sources.
Biomaterials Advances sits within Elsevier''s biomaterials science portfolio alongside Biomaterials, Materials Today Bio and Biomaterials and Biosystems. As part of the broader Materials Today family, Biomaterials Advances offers authors rigorous peer review, rapid decisions, and high visibility. We look forward to receiving your submissions!