Jairo Baquero, Simon K Joseph, Jakub Mroz, Camry V A'Keen, Melchor V Cantorias, Briana M Roman, Patrick Carberry
{"title":"Enhancing Efficiency and Radiolabeling Yields of Carbon-11 Radioligands for Clinical Research Using the Loop Method.","authors":"Jairo Baquero, Simon K Joseph, Jakub Mroz, Camry V A'Keen, Melchor V Cantorias, Briana M Roman, Patrick Carberry","doi":"10.3791/67406","DOIUrl":null,"url":null,"abstract":"<p><p>A successful positron emission tomography imaging program involving carbon-11 radiotracers demands fast, efficient, and reliable synthesis methods, requiring an on-site cyclotron and radiochemistry group, as well as clinical staff trained to operate under the unique constraints of the carbon-11 radionuclide. This study examines the merits and advantages of a captive solvent 'loop method' of radiolabeling four tracers with the carbon-11 radionuclide, producing the radioligands [<sup>11</sup>C]ER-176, [<sup>11</sup>C]MRB, [<sup>11</sup>C]mHED, and [<sup>11</sup>C]PiB. The 'loop method' is compared against the traditional reactor-based method of carbon-11 methylation in the course of synthesizing the same radiotracers on the identical automated platform. Further, a complete overview of the clinical research preparation of the [<sup>11</sup>C]ER-176 radiotracer is presented. As demonstrated by the production of [<sup>11</sup>C]ER-176, the captive solvent 'loop method' of heterogeneous alkylation proved to be more efficient, with excellent radiochemical purity (99.6 ± 0.6%, n = 25), higher and more consistent radiochemical yield (end of synthesis (EOS) = 5.4 ± 2.2 GBq, n = 25) compared to the reactor method (EOS = 1.6 ± 0.5 GBq, n = 6), increased molar activity (loop method = 194 ± 66 GBq/µmol, n = 25; reactor method = 132 ± 78 GBq/µmol, n = 6), along with an average 5 min shorter reaction sequence.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 214","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67406","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
A successful positron emission tomography imaging program involving carbon-11 radiotracers demands fast, efficient, and reliable synthesis methods, requiring an on-site cyclotron and radiochemistry group, as well as clinical staff trained to operate under the unique constraints of the carbon-11 radionuclide. This study examines the merits and advantages of a captive solvent 'loop method' of radiolabeling four tracers with the carbon-11 radionuclide, producing the radioligands [11C]ER-176, [11C]MRB, [11C]mHED, and [11C]PiB. The 'loop method' is compared against the traditional reactor-based method of carbon-11 methylation in the course of synthesizing the same radiotracers on the identical automated platform. Further, a complete overview of the clinical research preparation of the [11C]ER-176 radiotracer is presented. As demonstrated by the production of [11C]ER-176, the captive solvent 'loop method' of heterogeneous alkylation proved to be more efficient, with excellent radiochemical purity (99.6 ± 0.6%, n = 25), higher and more consistent radiochemical yield (end of synthesis (EOS) = 5.4 ± 2.2 GBq, n = 25) compared to the reactor method (EOS = 1.6 ± 0.5 GBq, n = 6), increased molar activity (loop method = 194 ± 66 GBq/µmol, n = 25; reactor method = 132 ± 78 GBq/µmol, n = 6), along with an average 5 min shorter reaction sequence.
期刊介绍:
JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.