The role of universal stress protein Usp1413 in meropenem adaptive resistance and environmental stress responses in Acinetobacter baumannii.

IF 4.8 Q1 MICROBIOLOGY
Current Research in Microbial Sciences Pub Date : 2024-12-09 eCollection Date: 2025-01-01 DOI:10.1016/j.crmicr.2024.100332
Sirui Zhang, Jingdan Wang, Rong Yu, Haiping Liu, Shuyan Liu, Kai Luo, Jin'e Lei, Bei Han, Yanjiong Chen, Shaoshan Han, E Yang, Meng Xun, Lei Han
{"title":"The role of universal stress protein Usp1413 in meropenem adaptive resistance and environmental stress responses in <i>Acinetobacter baumannii</i>.","authors":"Sirui Zhang, Jingdan Wang, Rong Yu, Haiping Liu, Shuyan Liu, Kai Luo, Jin'e Lei, Bei Han, Yanjiong Chen, Shaoshan Han, E Yang, Meng Xun, Lei Han","doi":"10.1016/j.crmicr.2024.100332","DOIUrl":null,"url":null,"abstract":"<p><p>Although various mechanisms of carbapenem-resistance have been identified in the nosocomial pathogen <i>Acinetobacter baumannii</i>, the critical process of resistance evolution and the factors involved in are not well understood. Herein, we identified a universal stress protein Usp1413 which played an important role in adaptive resistance of <i>A. baumannii</i> to meropenem (MEM). Based on RNA-Seq and genome sequencing, Usp1413 was not only one of the most downregulated USPs, but also the bare one having mutation of tyrosine and glycine inserted at the site of 229-230 (YG229-230) under the stimulation of MEM. Deletion of Usp1413 resulted in increased MEM resistance. In addition, Usp1413 affected the bacterial abilities of biofilm formation and swarm motility, as well as helped <i>A. baumannii</i> response to various environmental stresses. These effects of Usp1413 were achieved by regulating its interaction proteins, within the functions of YigZ family protein, acetyltransferase, and SulP family inorganic anion transporter. The insertion mutation of YG229-230 influenced both the expression of interaction proteins and the phenotypes of bacteria. Finally, the promotor region of Usp1413 was convinced by point mutations. Overall, our findings identified the universal stress protein Usp1413 as a contributor involved in MEM adaptive resistance and responded to numerous environmental stresses. This study provides novel insights into the mechanism of universal stress proteins in participating antibiotic resistance, and affords a potential target for controlling drug resistance development in <i>A. baumannii</i>.</p>","PeriodicalId":34305,"journal":{"name":"Current Research in Microbial Sciences","volume":"8 ","pages":"100332"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699434/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Microbial Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmicr.2024.100332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Although various mechanisms of carbapenem-resistance have been identified in the nosocomial pathogen Acinetobacter baumannii, the critical process of resistance evolution and the factors involved in are not well understood. Herein, we identified a universal stress protein Usp1413 which played an important role in adaptive resistance of A. baumannii to meropenem (MEM). Based on RNA-Seq and genome sequencing, Usp1413 was not only one of the most downregulated USPs, but also the bare one having mutation of tyrosine and glycine inserted at the site of 229-230 (YG229-230) under the stimulation of MEM. Deletion of Usp1413 resulted in increased MEM resistance. In addition, Usp1413 affected the bacterial abilities of biofilm formation and swarm motility, as well as helped A. baumannii response to various environmental stresses. These effects of Usp1413 were achieved by regulating its interaction proteins, within the functions of YigZ family protein, acetyltransferase, and SulP family inorganic anion transporter. The insertion mutation of YG229-230 influenced both the expression of interaction proteins and the phenotypes of bacteria. Finally, the promotor region of Usp1413 was convinced by point mutations. Overall, our findings identified the universal stress protein Usp1413 as a contributor involved in MEM adaptive resistance and responded to numerous environmental stresses. This study provides novel insights into the mechanism of universal stress proteins in participating antibiotic resistance, and affords a potential target for controlling drug resistance development in A. baumannii.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Research in Microbial Sciences
Current Research in Microbial Sciences Immunology and Microbiology-Immunology and Microbiology (miscellaneous)
CiteScore
7.90
自引率
0.00%
发文量
81
审稿时长
66 days
文献相关原料
公司名称 产品信息 采购帮参考价格
阿拉丁 IPTG
阿拉丁 kanamycin
阿拉丁 carbenicillin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信