A De Novo Mutation in ACTC1 and a TTN Variant Linked to a Severe Sporadic Infant Dilated Cardiomyopathy Case.

Case Reports in Genetics Pub Date : 2024-12-28 eCollection Date: 2024-01-01 DOI:10.1155/crig/9517735
Jose G Acuña-Ochoa, Norma A Balderrábano-Saucedo, Ana C Cepeda-Nieto, Maria Y Alvarado-Cervantes, Vianca L Ibarra-Garcia, Daniel Barr, Matthew J Gage, Ryan Pfeiffer, Dan Hu, Hector Barajas-Martinez
{"title":"<i>A De Novo</i> Mutation in <i>ACTC1</i> and a <i>TTN</i> Variant Linked to a Severe Sporadic Infant Dilated Cardiomyopathy Case.","authors":"Jose G Acuña-Ochoa, Norma A Balderrábano-Saucedo, Ana C Cepeda-Nieto, Maria Y Alvarado-Cervantes, Vianca L Ibarra-Garcia, Daniel Barr, Matthew J Gage, Ryan Pfeiffer, Dan Hu, Hector Barajas-Martinez","doi":"10.1155/crig/9517735","DOIUrl":null,"url":null,"abstract":"<p><p>Structural or electrophysiologic cardiac anomalies may compromise cardiac function, leading to sudden cardiac death (SCD). Genetic screening of families with severe cardiomyopathies underlines the role of genetic variations in cardiac-specific genes. The present study details the clinical and genetic characterization of a malignant dilated cardiomyopathy (DCM) case in a 1-year-old Mexican child who presented a severe left ventricular dilation and dysfunction that led to SCD. A total of 132 genes (48 structure- and 84 electrical-related genes) were examined by next generation sequencing to identify potential causative mutations in comparison to control population. <i>In silico</i> analysis identified only two deleterious heterozygous mutations within an evolutionarily well-conserved region of the sarcomeric genes <i>ACTC1</i>/cardiac actin (c.664G > A/p.Ala222Thr) and <i>TTN</i>/titin (c.33250G > A/p.Glu11084Lys). Further pedigree analysis revealed the father of the index case to carry with the <i>TTN</i> mutation. Surprisingly, the <i>ACTC1</i> mutation was not harbored by any first-degree family member. Computational 3D modeling of the mutated proteins showed electrostatic and conformational shifts of cardiac actin compared to wild-type version, as well as changes in the stability of the compact/folded states of titin that normally contributes to avoid mechanic damage. In conclusion, our findings suggest a likely pathogenic <i>de novo</i> mutation in <i>ACTC1</i> in coexpression of a <i>TTN</i> variant as possible causes of an early onset of a severe DCM and premature death. These results may increase the known clinical pathogenic variations that may critically alter the structure of the heart, whose fatality could be prevented when rapidly detected.</p>","PeriodicalId":30325,"journal":{"name":"Case Reports in Genetics","volume":"2024 ","pages":"9517735"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699985/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Reports in Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/crig/9517735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Structural or electrophysiologic cardiac anomalies may compromise cardiac function, leading to sudden cardiac death (SCD). Genetic screening of families with severe cardiomyopathies underlines the role of genetic variations in cardiac-specific genes. The present study details the clinical and genetic characterization of a malignant dilated cardiomyopathy (DCM) case in a 1-year-old Mexican child who presented a severe left ventricular dilation and dysfunction that led to SCD. A total of 132 genes (48 structure- and 84 electrical-related genes) were examined by next generation sequencing to identify potential causative mutations in comparison to control population. In silico analysis identified only two deleterious heterozygous mutations within an evolutionarily well-conserved region of the sarcomeric genes ACTC1/cardiac actin (c.664G > A/p.Ala222Thr) and TTN/titin (c.33250G > A/p.Glu11084Lys). Further pedigree analysis revealed the father of the index case to carry with the TTN mutation. Surprisingly, the ACTC1 mutation was not harbored by any first-degree family member. Computational 3D modeling of the mutated proteins showed electrostatic and conformational shifts of cardiac actin compared to wild-type version, as well as changes in the stability of the compact/folded states of titin that normally contributes to avoid mechanic damage. In conclusion, our findings suggest a likely pathogenic de novo mutation in ACTC1 in coexpression of a TTN variant as possible causes of an early onset of a severe DCM and premature death. These results may increase the known clinical pathogenic variations that may critically alter the structure of the heart, whose fatality could be prevented when rapidly detected.

与严重散发性婴儿扩张型心肌病病例相关的ACTC1和TTN突变的新生突变
心脏结构或电生理异常可能损害心脏功能,导致心源性猝死(SCD)。严重心肌病家族的遗传筛查强调了心脏特异性基因遗传变异的作用。本研究详细介绍了1岁墨西哥儿童恶性扩张型心肌病(DCM)病例的临床和遗传特征,该病例表现为严重的左心室扩张和功能障碍,导致SCD。通过下一代测序共检测了132个基因(48个结构相关基因和84个电相关基因),以确定与对照人群相比的潜在致病突变。在计算机分析中,在一个进化上保守的肌肉合成基因ACTC1/心脏肌动蛋白(c.664G > A/p.Ala222Thr)和TTN/titin (c.33250G > A/p.Glu11084Lys)区域中,只发现了两个有害的杂合突变。进一步的系谱分析显示,该病例的父亲携带TTN突变。令人惊讶的是,ACTC1突变没有被任何一级家族成员所携带。突变蛋白的计算三维建模显示,与野生型相比,心脏肌动蛋白的静电和构象发生了变化,以及肌动蛋白致密/折叠状态稳定性的变化,这通常有助于避免机械损伤。总之,我们的研究结果表明,TTN变异共表达的ACTC1中可能存在致病性新生突变,这可能是早期发病的严重DCM和过早死亡的原因。这些结果可能会增加已知的临床致病变异,这些变异可能会严重改变心脏的结构,如果迅速检测到,就可以预防其死亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信