{"title":"RBM47 is a novel immunotherapeutic target and prognostic biomarker in gliomas.","authors":"Wei Wei, Yongfu Cao, Xin Lu, Long Wang, Jianbin Li, Guojun Deng, Donghai Li, Limin Xiao","doi":"10.1038/s41598-024-84719-z","DOIUrl":null,"url":null,"abstract":"<p><p>The role of RBM47, an RNA-binding protein, in shaping the immune landscape of gliomas and tumor immune responses is yet to be fully studied. Therefore, a comprehensive investigation into the immunomodulatory roles of RBM47 in gliomas was conducted, leveraging gene expression data from multi-omic datasets. The prognosis of patients with gliomas considering RBM47 was elucidated using bioinformatics methods and clinical data, with results validated using immunohistochemistry and immunofluorescence analyses. The expression of RBM47 in gliomas was higher than that in normal tissues and was positively correlated with the World Health Organization tumor grade. Increased RBM47 expression is associated with poor prognosis in patients with glioma, serving as an independent predictor of overall survival. The nomogram combining RBM47 expression levels with clinical prognostic factors demonstrated strong predictive accuracy, achieving a C-index of up to 0.863 in both TCGA training and CGGA validation groups. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene Set Variation Analysis indicated that RBM47 is closely related to immunity and inflammation. Single-cell sequencing and immunofluorescence assays confirmed the enrichment of RBM47 in CD163 + macrophages. Therefore, RBM47 plays a vital role in the immune microenvironment of gliomas and may be a potential immunotherapy target.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"854"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11701128/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-84719-z","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The role of RBM47, an RNA-binding protein, in shaping the immune landscape of gliomas and tumor immune responses is yet to be fully studied. Therefore, a comprehensive investigation into the immunomodulatory roles of RBM47 in gliomas was conducted, leveraging gene expression data from multi-omic datasets. The prognosis of patients with gliomas considering RBM47 was elucidated using bioinformatics methods and clinical data, with results validated using immunohistochemistry and immunofluorescence analyses. The expression of RBM47 in gliomas was higher than that in normal tissues and was positively correlated with the World Health Organization tumor grade. Increased RBM47 expression is associated with poor prognosis in patients with glioma, serving as an independent predictor of overall survival. The nomogram combining RBM47 expression levels with clinical prognostic factors demonstrated strong predictive accuracy, achieving a C-index of up to 0.863 in both TCGA training and CGGA validation groups. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene Set Variation Analysis indicated that RBM47 is closely related to immunity and inflammation. Single-cell sequencing and immunofluorescence assays confirmed the enrichment of RBM47 in CD163 + macrophages. Therefore, RBM47 plays a vital role in the immune microenvironment of gliomas and may be a potential immunotherapy target.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.