Influential Factors in the Treatment of Pseudomonas aeruginosa Infections at a Tertiary Hospital in Vietnam.

IF 2.3 4区 医学 Q3 INFECTIOUS DISEASES
Tiep Khac Nguyen, Ngoc Khanh Le, Pham Hong Nhung, Thao Thi Huong Bui, Gang Wang, Françoise Van Bambeke, Phung Thanh Huong
{"title":"Influential Factors in the Treatment of <i>Pseudomonas aeruginosa</i> Infections at a Tertiary Hospital in Vietnam.","authors":"Tiep Khac Nguyen, Ngoc Khanh Le, Pham Hong Nhung, Thao Thi Huong Bui, Gang Wang, Françoise Van Bambeke, Phung Thanh Huong","doi":"10.1089/mdr.2024.0191","DOIUrl":null,"url":null,"abstract":"<p><p>As an opportunistic pathogen, <i>Pseudomonas aeruginosa</i> is often associated with severe respiratory infections. A study conducted in an ICU of a tertiary hospital in Vietnam, where infection management is relatively good, yielded only 18 clinical isolates of <i>P. aeruginosa</i> over 6 months. Though the number is small, treating <i>P. aeruginosa</i> infections is highly complicated. Out of 18 patients, 15 showed no improvement after treatment, leading to worsening conditions or death, possibly due to various factors. High rates of mechanical ventilation (83.3%) may be a contributing factor, suggesting a certain correlation between ventilation and treatment failure. The antibiotic resistance rate in these isolates is relatively high, with a multidrug-resistant rate of 44.4%, resulting in treatment failures when empirical antibiotics are used without susceptibility testing. All isolates have the ability to form biofilms. Moreover, bacteria in stationary phase or within biofilms exhibited poor responses to meropenem and amikacin (about 10% of bacteria survive after antibiotic exposure). Conversely, ciprofloxacin shows much better efficacy, indicating that fluoroquinolones should be used in combination therapy for <i>P. aeruginosa</i> infection to eliminate persistent cells and biofilm-embedded microorganisms, thus enhancing treatment effectiveness.</p>","PeriodicalId":18701,"journal":{"name":"Microbial drug resistance","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial drug resistance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/mdr.2024.0191","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

As an opportunistic pathogen, Pseudomonas aeruginosa is often associated with severe respiratory infections. A study conducted in an ICU of a tertiary hospital in Vietnam, where infection management is relatively good, yielded only 18 clinical isolates of P. aeruginosa over 6 months. Though the number is small, treating P. aeruginosa infections is highly complicated. Out of 18 patients, 15 showed no improvement after treatment, leading to worsening conditions or death, possibly due to various factors. High rates of mechanical ventilation (83.3%) may be a contributing factor, suggesting a certain correlation between ventilation and treatment failure. The antibiotic resistance rate in these isolates is relatively high, with a multidrug-resistant rate of 44.4%, resulting in treatment failures when empirical antibiotics are used without susceptibility testing. All isolates have the ability to form biofilms. Moreover, bacteria in stationary phase or within biofilms exhibited poor responses to meropenem and amikacin (about 10% of bacteria survive after antibiotic exposure). Conversely, ciprofloxacin shows much better efficacy, indicating that fluoroquinolones should be used in combination therapy for P. aeruginosa infection to eliminate persistent cells and biofilm-embedded microorganisms, thus enhancing treatment effectiveness.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial drug resistance
Microbial drug resistance 医学-传染病学
CiteScore
6.00
自引率
3.80%
发文量
118
审稿时长
6-12 weeks
期刊介绍: Microbial Drug Resistance (MDR) is an international, peer-reviewed journal that covers the global spread and threat of multi-drug resistant clones of major pathogens that are widely documented in hospitals and the scientific community. The Journal addresses the serious challenges of trying to decipher the molecular mechanisms of drug resistance. MDR provides a multidisciplinary forum for peer-reviewed original publications as well as topical reviews and special reports. MDR coverage includes: Molecular biology of resistance mechanisms Virulence genes and disease Molecular epidemiology Drug design Infection control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信