Development of Nanoemulsion-Based Gel of Betulin for the Treatment of Psoriasis-Like Skin Inflammation in a Small Animal Model.

Q2 Pharmacology, Toxicology and Pharmaceutics
Dev Prakash, Anjali Chaudhari
{"title":"Development of Nanoemulsion-Based Gel of Betulin for the Treatment of Psoriasis-Like Skin Inflammation in a Small Animal Model.","authors":"Dev Prakash, Anjali Chaudhari","doi":"10.2174/0122117385336297241210053845","DOIUrl":null,"url":null,"abstract":"<p><p>Introduction/ Background: This study aimed to introduce a gel (NEG) formulation containing betulin-loaded nanoemulsions for topical psoriasis treatment.</p><p><strong>Materials and methods: </strong>The prepared nanoemulsions were optimized for smaller particle size and higher drug content using a response surface methodology that exhibited uniform distribution and high drug loading (21.17±3.55%).</p><p><strong>Results: </strong>The gel demonstrated skin-compatible pH and good spreadability. The developed gel showed slower release compared to nanoemulsion. In vivo pharmacokinetics demonstrated elevated AUC (55835.1 μg/cm2.h) and extended Tmax (720 min) for the gel than NE, indicating extended skin retention. Improved skin hydration (35%) and lipid content (28%) were observed, along with significant reductions in PASI scores and cytokine levels.</p><p><strong>Discussion: </strong>Provided with enhanced skin retention, improved hydration, and lipid content, along with significant therapeutic efficacy in psoriasis treatment, betulin-loaded nanoemulsion gel demonstrated prolonged drug release and notably reduced PASI scores and cytokine levels, highlighting its effectiveness against psoriasis.</p><p><strong>Conclusion: </strong>This highlights the promising potential of NEG for topical psoriasis management.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122117385336297241210053845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction/ Background: This study aimed to introduce a gel (NEG) formulation containing betulin-loaded nanoemulsions for topical psoriasis treatment.

Materials and methods: The prepared nanoemulsions were optimized for smaller particle size and higher drug content using a response surface methodology that exhibited uniform distribution and high drug loading (21.17±3.55%).

Results: The gel demonstrated skin-compatible pH and good spreadability. The developed gel showed slower release compared to nanoemulsion. In vivo pharmacokinetics demonstrated elevated AUC (55835.1 μg/cm2.h) and extended Tmax (720 min) for the gel than NE, indicating extended skin retention. Improved skin hydration (35%) and lipid content (28%) were observed, along with significant reductions in PASI scores and cytokine levels.

Discussion: Provided with enhanced skin retention, improved hydration, and lipid content, along with significant therapeutic efficacy in psoriasis treatment, betulin-loaded nanoemulsion gel demonstrated prolonged drug release and notably reduced PASI scores and cytokine levels, highlighting its effectiveness against psoriasis.

Conclusion: This highlights the promising potential of NEG for topical psoriasis management.

小动物模型中治疗牛皮癣样皮肤炎症的纳米乳脂凝胶的研制。
简介/背景:本研究旨在介绍一种含有白桦素负载纳米乳液的凝胶(NEG)配方,用于局部治疗银屑病。材料与方法:采用响应面法优化制备的纳米乳具有粒径小、药物含量高、分布均匀、载药量高(21.17±3.55%)的特点。结果:该凝胶具有良好的皮肤相容性和涂抹性。与纳米乳相比,凝胶的释放速度较慢。体内药代动力学显示,与NE相比,凝胶的AUC升高(55835.1 μg/cm2.h), Tmax延长(720 min),表明皮肤滞留时间延长。观察到皮肤水合作用(35%)和脂质含量(28%)改善,PASI评分和细胞因子水平显著降低。讨论:白桦素纳米乳凝胶具有增强皮肤保持性,改善水合作用和脂质含量,在银屑病治疗中具有显著的治疗效果,可延长药物释放时间,显著降低PASI评分和细胞因子水平,突出其治疗银屑病的有效性。结论:这突出了NEG治疗局部银屑病的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmaceutical nanotechnology
Pharmaceutical nanotechnology Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
4.20
自引率
0.00%
发文量
46
期刊介绍: Pharmaceutical Nanotechnology publishes original manuscripts, full-length/mini reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信