Arun Radhakrishnan, Nikhitha K Shanmukhan, Linda Christabel S
{"title":"An Enhanced Scrutiny of Mechanistic and Translational Approaches to Extinguish Cancer Hypoxia.","authors":"Arun Radhakrishnan, Nikhitha K Shanmukhan, Linda Christabel S","doi":"10.2174/0122117385328105241216042016","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer continues to pose a formidable challenge in global health due to its incidence and increasing resistance to conventional therapies. A key factor driving this resistance is tumor hypoxia, characterized by reduced oxygen levels within cancer cells. This hypoxic environment triggers a variety of adaptive mechanisms, significantly compromising the efficacy of cancer treatments. Notably, hypoxia promotes metastasis and reshapes the tumor microenvironment (TME), thereby aggravating treatment resistance. Central to this process are hypoxia-inducible factors (HIFs), which mediate cellular adaptations such as metabolic shifts and enhanced survival pathways. These adaptations render therapies like chemotherapy, radiotherapy, and photodynamic therapy (PDT) less effective. Additionally, hypoxia-induced vascular irregularities further impede drug delivery, amplifying the therapeutic challenge. This review provides a comprehensive examination of the roles of hypoxia in cancer, its contributions to drug resistance, and its interplay with apoptosis and autophagy. By evaluating novel mechanistic and translational approaches to target hypoxia, this study highlights the potential to improve therapeutic outcomes and offers insights into overcoming treatment resistance in cancer.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122117385328105241216042016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer continues to pose a formidable challenge in global health due to its incidence and increasing resistance to conventional therapies. A key factor driving this resistance is tumor hypoxia, characterized by reduced oxygen levels within cancer cells. This hypoxic environment triggers a variety of adaptive mechanisms, significantly compromising the efficacy of cancer treatments. Notably, hypoxia promotes metastasis and reshapes the tumor microenvironment (TME), thereby aggravating treatment resistance. Central to this process are hypoxia-inducible factors (HIFs), which mediate cellular adaptations such as metabolic shifts and enhanced survival pathways. These adaptations render therapies like chemotherapy, radiotherapy, and photodynamic therapy (PDT) less effective. Additionally, hypoxia-induced vascular irregularities further impede drug delivery, amplifying the therapeutic challenge. This review provides a comprehensive examination of the roles of hypoxia in cancer, its contributions to drug resistance, and its interplay with apoptosis and autophagy. By evaluating novel mechanistic and translational approaches to target hypoxia, this study highlights the potential to improve therapeutic outcomes and offers insights into overcoming treatment resistance in cancer.
期刊介绍:
Pharmaceutical Nanotechnology publishes original manuscripts, full-length/mini reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.