Extended homogeneous field correction method based on oblique projection in OPM-MEG.

IF 4.7 2区 医学 Q1 NEUROIMAGING
Fulong Wang, Fuzhi Cao, Yujie Ma, Ruochen Zhao, Ruonan Wang, Nan An, Min Xiang, Dawei Wang, Xiaolin Ning
{"title":"Extended homogeneous field correction method based on oblique projection in OPM-MEG.","authors":"Fulong Wang, Fuzhi Cao, Yujie Ma, Ruochen Zhao, Ruonan Wang, Nan An, Min Xiang, Dawei Wang, Xiaolin Ning","doi":"10.1016/j.neuroimage.2024.120991","DOIUrl":null,"url":null,"abstract":"<p><p>Optically pumped magnetometer-based magnetoencephalography (OPM-MEG) is an novel non-invasive functional imaging technique that features more flexible sensor configurations and wearability; however, this also increases the requirement for environmental noise suppression. Subspace projection algorithms are widely used in MEG to suppress noise. However, in OPM-MEG systems with a limited number of channels, subspace projection methods that rely on spatial oversampling exhibit reduced performance. The homogeneous field correction (HFC) method resolves this problem by constructing a low-rank spatial model; however, it cannot address complex non-homogeneous noise. The spatiotemporal extended homogeneous field correction (teHFC) method uses multiple orthogonal projections to suppress disturbances. However, the signal and noise subspace are not completely orthogonal, limiting enhancement in the capabilities of the teHFC. Therefore, we propose an extended homogeneous field correction method based on oblique projection (opHFC), which overcomes the issue of non-orthogonality between the signal and noise subspace, enhancing the ability to suppress complex interferences. The opHFC constructs an oblique projection operator that divides the signals into internal and external components, eliminating complex interferences through temporal extension. We compared the opHFC with four benchmark methods by simulations and auditory and somatosensory evoked OPM-MEG experiments. The results demonstrate that opHFC provides superior noise suppression with minimal distortion, enhancing the signal quality at the sensor and source levels. Our method offers a novel approach to reducing interference in OPM-MEG systems, expanding their application scenarios, and providing high-quality signals for scientific research and clinical applications based on OPM-MEG.</p>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":" ","pages":"120991"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroimage.2024.120991","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Optically pumped magnetometer-based magnetoencephalography (OPM-MEG) is an novel non-invasive functional imaging technique that features more flexible sensor configurations and wearability; however, this also increases the requirement for environmental noise suppression. Subspace projection algorithms are widely used in MEG to suppress noise. However, in OPM-MEG systems with a limited number of channels, subspace projection methods that rely on spatial oversampling exhibit reduced performance. The homogeneous field correction (HFC) method resolves this problem by constructing a low-rank spatial model; however, it cannot address complex non-homogeneous noise. The spatiotemporal extended homogeneous field correction (teHFC) method uses multiple orthogonal projections to suppress disturbances. However, the signal and noise subspace are not completely orthogonal, limiting enhancement in the capabilities of the teHFC. Therefore, we propose an extended homogeneous field correction method based on oblique projection (opHFC), which overcomes the issue of non-orthogonality between the signal and noise subspace, enhancing the ability to suppress complex interferences. The opHFC constructs an oblique projection operator that divides the signals into internal and external components, eliminating complex interferences through temporal extension. We compared the opHFC with four benchmark methods by simulations and auditory and somatosensory evoked OPM-MEG experiments. The results demonstrate that opHFC provides superior noise suppression with minimal distortion, enhancing the signal quality at the sensor and source levels. Our method offers a novel approach to reducing interference in OPM-MEG systems, expanding their application scenarios, and providing high-quality signals for scientific research and clinical applications based on OPM-MEG.

基于 OPM-MEG 中斜投影的扩展均质场校正方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信