{"title":"Exploring Elastic Lipid Nanovesicles for Enhanced Skin Permeation of Whole Plant Extract: A Comprehensive Investigation","authors":"Rahul Maheshwari, Mayank Sharma, Sankha Bhattacharya","doi":"10.1002/jbm.b.35527","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A new method is developed using elastic lipid nanovesicles (ELNs) loaded with ethanolic extract of <i>Lantana camara</i> (LC) to enhance skin permeation of plant actives. The ELNs contained cholesterol, 1, 2-distearoyl-sn-glycero-3-phosphocholine, span 80, and tween 80. Firstly, 15 formulations were produced to examine critical factors likely affecting formulation characteristics. In addition, surface characteristics, vesicle size, polydispersity index, zeta potential, degree of deformability, and % entrapment efficiency (% EE) of ELN were examined. As a significant parameter, skin permeation was measured (using Start-M; it highly resembles human skin). The influence of size, hydrophilic–lipophilic balance (HLB), and surface ratio were vital to permeation through Start-M. In particular, the % LC extract permeation decreased at more extensive size ranges, 400, and 350–450 nm. In contrast, the % LC extract permeation increased significantly at smaller size ranges, such as 200 and 100 nm. More than 75% of the LC extract was permeated within 8 h when the surfactant ratio was (span 80:tween 80; 25%:75%). Permeation studies conducted based on HLB values revealed that 78% of LC extract was permeated in 8 h when HLB was 12.2, and that permeation decreased with an increase in HLB. Cell viability assay using SK-MEL-37 cells (skin cancer) revealed that ELN reduced the viability by ~80% in 24 h, further validating the formulation. Future research could investigate the long-term safety and therapeutic potential of these ELNs in clinical settings and their effectiveness in delivering other plant-based extracts for transdermal applications via ELNs.</p>\n </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35527","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A new method is developed using elastic lipid nanovesicles (ELNs) loaded with ethanolic extract of Lantana camara (LC) to enhance skin permeation of plant actives. The ELNs contained cholesterol, 1, 2-distearoyl-sn-glycero-3-phosphocholine, span 80, and tween 80. Firstly, 15 formulations were produced to examine critical factors likely affecting formulation characteristics. In addition, surface characteristics, vesicle size, polydispersity index, zeta potential, degree of deformability, and % entrapment efficiency (% EE) of ELN were examined. As a significant parameter, skin permeation was measured (using Start-M; it highly resembles human skin). The influence of size, hydrophilic–lipophilic balance (HLB), and surface ratio were vital to permeation through Start-M. In particular, the % LC extract permeation decreased at more extensive size ranges, 400, and 350–450 nm. In contrast, the % LC extract permeation increased significantly at smaller size ranges, such as 200 and 100 nm. More than 75% of the LC extract was permeated within 8 h when the surfactant ratio was (span 80:tween 80; 25%:75%). Permeation studies conducted based on HLB values revealed that 78% of LC extract was permeated in 8 h when HLB was 12.2, and that permeation decreased with an increase in HLB. Cell viability assay using SK-MEL-37 cells (skin cancer) revealed that ELN reduced the viability by ~80% in 24 h, further validating the formulation. Future research could investigate the long-term safety and therapeutic potential of these ELNs in clinical settings and their effectiveness in delivering other plant-based extracts for transdermal applications via ELNs.
期刊介绍:
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats:
• original research reports
• short research and development reports
• scientific reviews
• current concepts articles
• special reports
• editorials
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.