{"title":"Comparison of shank, rearfoot and forefoot coordination and its variability between runners with different strike patterns.","authors":"Zhen Wei, Hang Xu, Weiquan Zhong, Lin Wang","doi":"10.1016/j.jbiomech.2025.112494","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to compare shank, rearfoot and forefoot coordination and its variability between runners with habitual rearfoot strike (RFS) and non-RFS (NRFS). 58 healthy males participated in this study (32 RFS, 26 NRFS). Coordination patterns and variability were assessed for the shank, rearfoot, and forefoot segments using a modified vector coding technique during running. RFS runners exhibited significantly greater proportion of anti-phase with distal dominancy (rearfoot) during early and mid-stance, as well as a lower proportion of anti-phase with proximal dominancy (shank) during early stance compared to NRFS runners in frontal rearfoot - transverse shank (FRTS). Conversely, NRFS runners demonstrated significantly greater proportion of anti-phase with distal dominance (forefoot) in the sagittal, frontal, and transverse planes during early stance compared to RFS runners. Coordination variabilities for the FRTS (late stance), frontal rearfoot - frontal forefoot (FRFF) (early and late stance), and frontal rearfoot - transverse forefoot (FRTF) (mid stance) were greater in NRFS than in RFS runners. In contrast, coordination variability for frontal rearfoot - sagittal forefoot (FRSF) (early stance) was greater in RFS than in NRFS runners. The results could further extend the relationship between foot strike pattern and injuries from the perspective of coordination and its variability. Preliminary findings suggest that NRFS runners could benefit from intrinsic foot muscle training to mitigate the sustained loads on the soft tissues of the foot.</p>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"180 ","pages":"112494"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jbiomech.2025.112494","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to compare shank, rearfoot and forefoot coordination and its variability between runners with habitual rearfoot strike (RFS) and non-RFS (NRFS). 58 healthy males participated in this study (32 RFS, 26 NRFS). Coordination patterns and variability were assessed for the shank, rearfoot, and forefoot segments using a modified vector coding technique during running. RFS runners exhibited significantly greater proportion of anti-phase with distal dominancy (rearfoot) during early and mid-stance, as well as a lower proportion of anti-phase with proximal dominancy (shank) during early stance compared to NRFS runners in frontal rearfoot - transverse shank (FRTS). Conversely, NRFS runners demonstrated significantly greater proportion of anti-phase with distal dominance (forefoot) in the sagittal, frontal, and transverse planes during early stance compared to RFS runners. Coordination variabilities for the FRTS (late stance), frontal rearfoot - frontal forefoot (FRFF) (early and late stance), and frontal rearfoot - transverse forefoot (FRTF) (mid stance) were greater in NRFS than in RFS runners. In contrast, coordination variability for frontal rearfoot - sagittal forefoot (FRSF) (early stance) was greater in RFS than in NRFS runners. The results could further extend the relationship between foot strike pattern and injuries from the perspective of coordination and its variability. Preliminary findings suggest that NRFS runners could benefit from intrinsic foot muscle training to mitigate the sustained loads on the soft tissues of the foot.
期刊介绍:
The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership.
Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to:
-Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells.
-Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions.
-Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response.
-Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing.
-Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine.
-Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction.
-Molecular Biomechanics - Mechanical analyses of biomolecules.
-Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints.
-Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics.
-Sports Biomechanics - Mechanical analyses of sports performance.