Kiran Shehzadi, Muhammad Faisal Maqsood, Rehana Kanwal, Muhammad Shahbaz, Maria Naqve, Usman Zulfiqar, Muhammad Jamil, Noreen Khalid, Muhammad Fraz Ali, Walid Soufan
{"title":"Enhancing cadmium stress resilience in chickpea (<i>Cicer arietinum</i> L.) via exogenous melatonin application.","authors":"Kiran Shehzadi, Muhammad Faisal Maqsood, Rehana Kanwal, Muhammad Shahbaz, Maria Naqve, Usman Zulfiqar, Muhammad Jamil, Noreen Khalid, Muhammad Fraz Ali, Walid Soufan","doi":"10.1080/15226514.2024.2448464","DOIUrl":null,"url":null,"abstract":"<p><p>Chickpea (<i>Cicer arietinum</i> L.) productivity is hindered by biotic and abiotic stresses, particularly heavy metal toxicity. The pot experiment was carried out at the botanical garden of The Islamia University of Bahawalpur, Bahawalpur-Pakistan. The experimental treatments comprised of following details: T0 = Control + 0 µM MT, T1 = Control + 15 µM MT, T2= Control + 30 µM MT, T3 = 100 µM Cd + 0 µM MT, T4 = 100 µM Cd + 15 µM MT and T5 = 100 µM Cd + 30 µM MT. A completely randomized design (CRD) with three replicates was used. Cd stress significantly reduced shoot fresh (51.3%) and dry weight (50.4%), total chlorophyll (53.6%), and shoot Ca<sup>2+</sup> (56.6%). However, it increased proline (38.3%), total phenolics (74.2%), glycine betaine (46.4%), TSS (67.7%), TSP (50%), SOD (49.5%), POD (107%), and CAT (74.2%). Conversely, 30 µM MT improved shoot fresh (78.5%) and dry weight (76%), total chlorophyll (47%), SOD (26.5%), POD (35.8%), CAT (27.8%), proline (19%), TSS (24.5%), TSP (25.8%), and shoot Ca<sup>2+</sup> (56.6%). Results indicated that MT enhanced photosynthetic pigments and antioxidant activities, maintained ion homeostasis, and reduces reactive oxygen species. Desi variety performed better than Kabuli, and 30 µM MT application effectively mitigated Cd toxicity.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-16"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2024.2448464","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Chickpea (Cicer arietinum L.) productivity is hindered by biotic and abiotic stresses, particularly heavy metal toxicity. The pot experiment was carried out at the botanical garden of The Islamia University of Bahawalpur, Bahawalpur-Pakistan. The experimental treatments comprised of following details: T0 = Control + 0 µM MT, T1 = Control + 15 µM MT, T2= Control + 30 µM MT, T3 = 100 µM Cd + 0 µM MT, T4 = 100 µM Cd + 15 µM MT and T5 = 100 µM Cd + 30 µM MT. A completely randomized design (CRD) with three replicates was used. Cd stress significantly reduced shoot fresh (51.3%) and dry weight (50.4%), total chlorophyll (53.6%), and shoot Ca2+ (56.6%). However, it increased proline (38.3%), total phenolics (74.2%), glycine betaine (46.4%), TSS (67.7%), TSP (50%), SOD (49.5%), POD (107%), and CAT (74.2%). Conversely, 30 µM MT improved shoot fresh (78.5%) and dry weight (76%), total chlorophyll (47%), SOD (26.5%), POD (35.8%), CAT (27.8%), proline (19%), TSS (24.5%), TSP (25.8%), and shoot Ca2+ (56.6%). Results indicated that MT enhanced photosynthetic pigments and antioxidant activities, maintained ion homeostasis, and reduces reactive oxygen species. Desi variety performed better than Kabuli, and 30 µM MT application effectively mitigated Cd toxicity.
期刊介绍:
The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.