Ming-Qing Yu, Jun-Hong Linghu, Hua-Yan Xie, Gang Li, Feng Zhu, Guy Smagghe, Shun-Hua Gui, Tong-Xian Liu
{"title":"Characterization of sulfakinin and its role in larval feeding and molting in Spodoptera frugiperda.","authors":"Ming-Qing Yu, Jun-Hong Linghu, Hua-Yan Xie, Gang Li, Feng Zhu, Guy Smagghe, Shun-Hua Gui, Tong-Xian Liu","doi":"10.1111/1744-7917.13480","DOIUrl":null,"url":null,"abstract":"<p><p>Feeding and molting are particularly important physiological processes for insects, and it has been reported that neuropeptides are involved in the nervous regulation of these 2 processes. Sulfakinin (SK) is an important neuropeptide that is widely distributed among insects and plays a pivotal role in regulating feeding, courtship, aggression, and locomotion. In this study, we investigated the involvement of SK in feeding and molting on a highly notorious pest insect, the fall armyworm, Spodoptera frugiperda. SK transcript levels were found in all larval stages and there was a predominant expression of SK in the brain of 5th instar larvae. By immunostaining, SK was detected in 2 pairs of cells in the median protocerebrum. But during prolonged periods of starvation, there was a significant reduction in SK messenger RNA levels; however, subsequent refeeding led to a notable increase. To investigate the role of SK in feeding and molting, SK was silenced in S. frugiperda larvae through RNA interference. This resulted in a significant increase in food intake, weight gain, and the molting process happened more rapidly in the double-stranded SK-treated larvae compared to the controls. Conversely, injection of sulfated SK peptide (sSK) caused opposite effects. Interestingly, SK-knockdown in larvae resulted in increased levels of 20-hydroxyecdysone and also of the expression of some of it signaling pathway genes. Altogether, this study highlights the important role played by SK in regulating feeding and molting in S. frugiperda.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1744-7917.13480","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Feeding and molting are particularly important physiological processes for insects, and it has been reported that neuropeptides are involved in the nervous regulation of these 2 processes. Sulfakinin (SK) is an important neuropeptide that is widely distributed among insects and plays a pivotal role in regulating feeding, courtship, aggression, and locomotion. In this study, we investigated the involvement of SK in feeding and molting on a highly notorious pest insect, the fall armyworm, Spodoptera frugiperda. SK transcript levels were found in all larval stages and there was a predominant expression of SK in the brain of 5th instar larvae. By immunostaining, SK was detected in 2 pairs of cells in the median protocerebrum. But during prolonged periods of starvation, there was a significant reduction in SK messenger RNA levels; however, subsequent refeeding led to a notable increase. To investigate the role of SK in feeding and molting, SK was silenced in S. frugiperda larvae through RNA interference. This resulted in a significant increase in food intake, weight gain, and the molting process happened more rapidly in the double-stranded SK-treated larvae compared to the controls. Conversely, injection of sulfated SK peptide (sSK) caused opposite effects. Interestingly, SK-knockdown in larvae resulted in increased levels of 20-hydroxyecdysone and also of the expression of some of it signaling pathway genes. Altogether, this study highlights the important role played by SK in regulating feeding and molting in S. frugiperda.
期刊介绍:
Insect Science is an English-language journal, which publishes original research articles dealing with all fields of research in into insects and other terrestrial arthropods. Papers in any of the following fields will be considered: ecology, behavior, biogeography, physiology, biochemistry, sociobiology, phylogeny, pest management, and exotic incursions. The emphasis of the journal is on the adaptation and evolutionary biology of insects from the molecular to the ecosystem level. Reviews, mini reviews and letters to the editor, book reviews, and information about academic activities of the society are also published.