Mechanobiological enhancement of electrospun PCL/nHA membranes for guided tissue regeneration applications.

IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Journal of Biomaterials Applications Pub Date : 2025-04-01 Epub Date: 2025-01-05 DOI:10.1177/08853282241312285
Niki Dadgari, Hamidreza Fotoukian, Masoumeh Haghbin Nazarpak, Mehran Solati-Hashjin
{"title":"Mechanobiological enhancement of electrospun PCL/nHA membranes for guided tissue regeneration applications.","authors":"Niki Dadgari, Hamidreza Fotoukian, Masoumeh Haghbin Nazarpak, Mehran Solati-Hashjin","doi":"10.1177/08853282241312285","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to investigate the effects of adding nano-hydroxyapatite (nHA) to electrospun polycaprolactone (PCL) membranes for use in dental root regeneration. Porous membranes containing varying amounts of nHA (0, 1, 1.5, and 2.5 wt%) were fabricated using the electrospinning method. The physicochemical, mechanical, and biological properties of the membranes were evaluated. The synthesized nHA particles had an average size of 52 nm. Electrospun membranes exhibited uniform fibrous morphology with porosities ranging from 56% to 86%. Cyclic thermal stress (5°C-50°C) improved the mechanical properties of the composite membranes, resulting in a decrease in ultimate tensile strength (UTS) for pristine PCL from 3 ± 0.12 MPa to 1.7 ± 0.11 MPa, while the UTS for PCL membranes containing 1.5% nHA increased from 3.3 ± 0.30 MPa to 4.18 ± 0.28 MPa. <i>In vitro</i> bioactivity in simulated body fluid (SBF) showed enhanced apatite formation, particularly after 21 and 28 days. Cytotoxicity assays with MG-63 osteoblast-like cells demonstrated good biological performance. The incorporation of nHA not only improved the mechanical properties but also enhanced the bioactivity and cytocompatibility of the electrospun PCL membranes, making them promising candidates for guided tissue regeneration (GTR) applications.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"1037-1054"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282241312285","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to investigate the effects of adding nano-hydroxyapatite (nHA) to electrospun polycaprolactone (PCL) membranes for use in dental root regeneration. Porous membranes containing varying amounts of nHA (0, 1, 1.5, and 2.5 wt%) were fabricated using the electrospinning method. The physicochemical, mechanical, and biological properties of the membranes were evaluated. The synthesized nHA particles had an average size of 52 nm. Electrospun membranes exhibited uniform fibrous morphology with porosities ranging from 56% to 86%. Cyclic thermal stress (5°C-50°C) improved the mechanical properties of the composite membranes, resulting in a decrease in ultimate tensile strength (UTS) for pristine PCL from 3 ± 0.12 MPa to 1.7 ± 0.11 MPa, while the UTS for PCL membranes containing 1.5% nHA increased from 3.3 ± 0.30 MPa to 4.18 ± 0.28 MPa. In vitro bioactivity in simulated body fluid (SBF) showed enhanced apatite formation, particularly after 21 and 28 days. Cytotoxicity assays with MG-63 osteoblast-like cells demonstrated good biological performance. The incorporation of nHA not only improved the mechanical properties but also enhanced the bioactivity and cytocompatibility of the electrospun PCL membranes, making them promising candidates for guided tissue regeneration (GTR) applications.

静电纺丝PCL/nHA膜在引导组织再生应用中的机械生物学增强。
本研究旨在探讨纳米羟基磷灰石(nHA)在静电纺聚己内酯(PCL)膜中的应用效果。采用静电纺丝法制备了含有不同数量nHA(0、1、1.5和2.5 wt%)的多孔膜。对膜的物理化学、力学和生物学性能进行了评价。合成的nHA颗粒平均粒径为52 nm。静电纺丝膜具有均匀的纤维形态,孔隙率为56% ~ 86%。循环热应力(5°C-50°C)改善了复合膜的力学性能,使原始PCL的极限拉伸强度(UTS)从3±0.12 MPa降低到1.7±0.11 MPa,而含1.5% nHA的PCL膜的UTS从3.3±0.30 MPa提高到4.18±0.28 MPa。体外生物活性在模拟体液(SBF)中显示磷灰石形成增强,特别是在21和28天后。MG-63成骨样细胞的细胞毒性试验显示出良好的生物学性能。nHA的掺入不仅改善了静电纺PCL膜的力学性能,而且增强了其生物活性和细胞相容性,使其成为引导组织再生(GTR)应用的有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomaterials Applications
Journal of Biomaterials Applications 工程技术-材料科学:生物材料
CiteScore
5.10
自引率
3.40%
发文量
144
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials. Peer-reviewed articles by biomedical specialists from around the world cover: New developments in biomaterials, R&D, properties and performance, evaluation and applications Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices Current findings in biological compatibility/incompatibility of biomaterials The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use. The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信