Chrissa Petersen, Adhini Kuppuswamy Satheesh Babu, Ceres Mattos Della Lucia, Henry A Paz, Lisard Iglesias-Carres, Ying Zhong, Thunder Jalili, J David Symons, Kartik Shankar, Andrew P Neilson, Umesh D Wankhade, Pon Velayutham Anandh Babu
{"title":"Gut microbes metabolize strawberry phytochemicals and mediate their beneficial effects on vascular inflammation.","authors":"Chrissa Petersen, Adhini Kuppuswamy Satheesh Babu, Ceres Mattos Della Lucia, Henry A Paz, Lisard Iglesias-Carres, Ying Zhong, Thunder Jalili, J David Symons, Kartik Shankar, Andrew P Neilson, Umesh D Wankhade, Pon Velayutham Anandh Babu","doi":"10.1080/19490976.2024.2446375","DOIUrl":null,"url":null,"abstract":"<p><p>Evidence suggests that a healthy gut microbiome is essential for metabolizing dietary phytochemicals. However, the microbiome's role in metabolite production and the influence of gut dysbiosis on this process remain unclear. Further, studies on the relationship among gut microbes, metabolites, and biological activities of phytochemicals are limited. We addressed this knowledge gap using strawberry phytochemicals as a model. C57BL/6J mice were fed a standard diet [C]; strawberry-supplemented diet (~2 human servings) [CS]; strawberry-supplemented diet and treated with antibiotics (to deplete gut microbes) [CSA]; high-fat diet (HFD) [HF]; strawberry-supplemented HFD [HS]; and strawberry-supplemented HFD and treated with antibiotics [HSA] for 12 weeks. First, antibiotic treatment suppressed the production of selected metabolites (CSA <i>vs</i>. CS), and <i>p</i>-coumaric acid was identified as a strawberry-derived microbial metabolite. Second, HFD-induced dysbiosis negatively affected metabolite production (HS <i>vs</i>. HF), and hippuric acid was identified as a microbial metabolite in HFD conditions. Third, dietary strawberries improved HFD-induced vascular inflammation (HS <i>vs</i>. HF). However, antibiotic treatment reduced metabolite production and abolished the vascular effects of strawberries (HSA <i>vs</i>. HS), indicating the importance of gut microbes in mediating the vascular benefits of strawberries <i>via</i> metabolites. Fourth, strawberry supplementation decreased <i>Coprobacillus</i> that was positively associated with vascular inflammation, whereas it increased <i>Lachnospiraceae</i> that was negatively associated with vascular inflammation and positively associated with hippuric acid. Fifth, hippuric acid was negatively associated with vascular inflammation. Our study fills in some pieces of the giant puzzle regarding the influence of gut microbes on the biological activities of phytochemicals. HFD-induced gut dysbiosis negatively impacts metabolite production and a strong association exists among gut microbes, strawberry-derived microbial metabolites, and the vascular benefits of dietary strawberries. Further, our study provides significant proof of concept to warrant future research on the use of strawberries as a nutritional strategy to prevent vascular complications.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2446375"},"PeriodicalIF":12.2000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut Microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19490976.2024.2446375","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Evidence suggests that a healthy gut microbiome is essential for metabolizing dietary phytochemicals. However, the microbiome's role in metabolite production and the influence of gut dysbiosis on this process remain unclear. Further, studies on the relationship among gut microbes, metabolites, and biological activities of phytochemicals are limited. We addressed this knowledge gap using strawberry phytochemicals as a model. C57BL/6J mice were fed a standard diet [C]; strawberry-supplemented diet (~2 human servings) [CS]; strawberry-supplemented diet and treated with antibiotics (to deplete gut microbes) [CSA]; high-fat diet (HFD) [HF]; strawberry-supplemented HFD [HS]; and strawberry-supplemented HFD and treated with antibiotics [HSA] for 12 weeks. First, antibiotic treatment suppressed the production of selected metabolites (CSA vs. CS), and p-coumaric acid was identified as a strawberry-derived microbial metabolite. Second, HFD-induced dysbiosis negatively affected metabolite production (HS vs. HF), and hippuric acid was identified as a microbial metabolite in HFD conditions. Third, dietary strawberries improved HFD-induced vascular inflammation (HS vs. HF). However, antibiotic treatment reduced metabolite production and abolished the vascular effects of strawberries (HSA vs. HS), indicating the importance of gut microbes in mediating the vascular benefits of strawberries via metabolites. Fourth, strawberry supplementation decreased Coprobacillus that was positively associated with vascular inflammation, whereas it increased Lachnospiraceae that was negatively associated with vascular inflammation and positively associated with hippuric acid. Fifth, hippuric acid was negatively associated with vascular inflammation. Our study fills in some pieces of the giant puzzle regarding the influence of gut microbes on the biological activities of phytochemicals. HFD-induced gut dysbiosis negatively impacts metabolite production and a strong association exists among gut microbes, strawberry-derived microbial metabolites, and the vascular benefits of dietary strawberries. Further, our study provides significant proof of concept to warrant future research on the use of strawberries as a nutritional strategy to prevent vascular complications.
有证据表明,健康的肠道微生物群对膳食植物化学物质的代谢至关重要。然而,微生物组在代谢物产生中的作用以及肠道生态失调对这一过程的影响尚不清楚。此外,对肠道微生物、代谢物和植物化学物质生物活性之间关系的研究还很有限。我们使用草莓植物化学物质作为模型来解决这一知识差距。C57BL/6J小鼠标准日粮的研究[C];草莓补充饮食(约2人份)[CS];草莓补充饮食和抗生素治疗(消耗肠道微生物)[CSA];高脂饮食(HFD);草莓补充HFD [HS];和草莓补充HFD,并用抗生素治疗12周。首先,抗生素治疗抑制了选定代谢物(CSA vs. CS)的产生,对香豆酸被确定为草莓衍生的微生物代谢物。其次,HFD诱导的生态失调会对代谢物的产生产生负面影响(HS vs. HF),而马尿酸被确定为HFD条件下的微生物代谢物。第三,食用草莓改善了hfd诱导的血管炎症(HS vs. HF)。然而,抗生素治疗减少了代谢物的产生并消除了草莓的血管效应(HSA vs. HS),表明肠道微生物通过代谢物介导草莓血管益处的重要性。第四,补充草莓减少了与血管炎症正相关的Coprobacillus,而增加了与血管炎症负相关的Lachnospiraceae,与马尿酸正相关。第五,马尿酸与血管炎症呈负相关。我们的研究填补了一些关于肠道微生物对植物化学物质生物活性影响的巨大谜团。hfd诱导的肠道生态失调会对代谢物的产生产生负面影响,并且肠道微生物、草莓衍生的微生物代谢物和食用草莓对血管的益处之间存在着强烈的关联。此外,我们的研究为未来研究草莓作为预防血管并发症的营养策略提供了重要的概念证明。
期刊介绍:
The intestinal microbiota plays a crucial role in human physiology, influencing various aspects of health and disease such as nutrition, obesity, brain function, allergic responses, immunity, inflammatory bowel disease, irritable bowel syndrome, cancer development, cardiac disease, liver disease, and more.
Gut Microbes serves as a platform for showcasing and discussing state-of-the-art research related to the microorganisms present in the intestine. The journal emphasizes mechanistic and cause-and-effect studies. Additionally, it has a counterpart, Gut Microbes Reports, which places a greater focus on emerging topics and comparative and incremental studies.