Activation of mechanoreceptor Piezo1 inhibits enteric neuronal growth and migration in vitro.

IF 3.5 3区 医学 Q2 NEUROSCIENCES
Frontiers in Molecular Neuroscience Pub Date : 2024-12-20 eCollection Date: 2024-01-01 DOI:10.3389/fnmol.2024.1474025
Chioma Moneme, Oluyinka O Olutoye, Michał F Sobstel, Yuwen Zhang, Xinyu Zhou, Jacob L Kaminer, Britney A Hsu, Chengli Shen, Arabinda Mandal, Hui Li, Ling Yu, Swathi Balaji, Sundeep G Keswani, Lily S Cheng
{"title":"Activation of mechanoreceptor Piezo1 inhibits enteric neuronal growth and migration <i>in vitro</i>.","authors":"Chioma Moneme, Oluyinka O Olutoye, Michał F Sobstel, Yuwen Zhang, Xinyu Zhou, Jacob L Kaminer, Britney A Hsu, Chengli Shen, Arabinda Mandal, Hui Li, Ling Yu, Swathi Balaji, Sundeep G Keswani, Lily S Cheng","doi":"10.3389/fnmol.2024.1474025","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Dysfunction of the enteric nervous system (ENS) is linked to a myriad of gastrointestinal (GI) disorders. Piezo1 is a mechanosensitive ion channel found throughout the GI tract, but its role in the ENS is largely unknown. We hypothesize that Piezo1 plays an important role in the growth and development of the ENS.</p><p><strong>Methods: </strong>Enteric neural crest-derived progenitor cells (ENPC) were isolated from adult mouse intestine and propagated in culture as neurospheres. ENPC-derived neurons were then subject to <i>in vitro</i> stretch in the presence or absence of Piezo1 antagonist (GsMTx4). Transcriptomes of stretched and unstretched ENPC-derived cells were compared using bulk RNA sequencing. Enteric neurons were also cultured under static conditions in the presence of Piezo1 agonist (Yoda1) or antagonist. Neuronal phenotype, migration, and recovery from injury were compared between groups.</p><p><strong>Results: </strong>Though stretch did not cause upregulation of Piezo1 expression in enteric neurons, both stretch and Piezo1 activation produced similar alterations in neuronal morphology. Compared to control, neurite length was significantly shorter when stretched and in the presence of Piezo1 activation. Piezo1 inhibition prevented a significant reduction in neurite length in stretched neurons. Piezo1 inhibition also led to significantly increased neuronal migration, whereas Piezo1 activation resulted in significantly decreased neuronal migration and slower neuronal recovery from injury.</p><p><strong>Conclusion: </strong>Mechanotransduction plays an important role in regulating normal GI function. Our results suggest that the Piezo1 mechanoreceptor may play an important role in the ENS as its activation leads to decreased neuronal growth and migration. Piezo1 could be an important target for diseases of ENS dysfunction and development.</p>","PeriodicalId":12630,"journal":{"name":"Frontiers in Molecular Neuroscience","volume":"17 ","pages":"1474025"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695422/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnmol.2024.1474025","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Dysfunction of the enteric nervous system (ENS) is linked to a myriad of gastrointestinal (GI) disorders. Piezo1 is a mechanosensitive ion channel found throughout the GI tract, but its role in the ENS is largely unknown. We hypothesize that Piezo1 plays an important role in the growth and development of the ENS.

Methods: Enteric neural crest-derived progenitor cells (ENPC) were isolated from adult mouse intestine and propagated in culture as neurospheres. ENPC-derived neurons were then subject to in vitro stretch in the presence or absence of Piezo1 antagonist (GsMTx4). Transcriptomes of stretched and unstretched ENPC-derived cells were compared using bulk RNA sequencing. Enteric neurons were also cultured under static conditions in the presence of Piezo1 agonist (Yoda1) or antagonist. Neuronal phenotype, migration, and recovery from injury were compared between groups.

Results: Though stretch did not cause upregulation of Piezo1 expression in enteric neurons, both stretch and Piezo1 activation produced similar alterations in neuronal morphology. Compared to control, neurite length was significantly shorter when stretched and in the presence of Piezo1 activation. Piezo1 inhibition prevented a significant reduction in neurite length in stretched neurons. Piezo1 inhibition also led to significantly increased neuronal migration, whereas Piezo1 activation resulted in significantly decreased neuronal migration and slower neuronal recovery from injury.

Conclusion: Mechanotransduction plays an important role in regulating normal GI function. Our results suggest that the Piezo1 mechanoreceptor may play an important role in the ENS as its activation leads to decreased neuronal growth and migration. Piezo1 could be an important target for diseases of ENS dysfunction and development.

机械受体Piezo1的激活抑制肠内神经元的体外生长和迁移。
肠神经系统(ENS)功能障碍与许多胃肠道(GI)疾病有关。Piezo1是一种遍布胃肠道的机械敏感离子通道,但其在ENS中的作用在很大程度上是未知的。方法:从成年小鼠肠中分离肠神经嵴源性祖细胞(Enteric neural crest derived progenitor cells, ENPC),培养成神经球。然后,在存在或不存在Piezo1拮抗剂(GsMTx4)的情况下,对enpc衍生的神经元进行体外拉伸。使用大量RNA测序比较拉伸和未拉伸的enpc衍生细胞的转录组。肠神经元也在Piezo1激动剂(Yoda1)或拮抗剂存在的静态条件下培养。比较两组间神经元表型、迁移和损伤恢复情况。结果:拉伸未引起肠神经元中Piezo1表达上调,但拉伸和Piezo1激活对神经元形态产生相似的改变。与对照组相比,当拉伸和Piezo1激活时,神经突长度显着缩短。Piezo1抑制阻止了拉伸神经元中神经突长度的显著减少。Piezo1抑制也导致神经元迁移显著增加,而Piezo1激活导致神经元迁移显著减少,损伤后神经元恢复缓慢。结论:机械转导在调节正常胃肠道功能中起重要作用。我们的研究结果表明,Piezo1机械感受器可能在ENS中发挥重要作用,因为它的激活导致神经元生长和迁移减少。Piezo1可能是ENS功能障碍和发育疾病的重要靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
2.10%
发文量
669
审稿时长
14 weeks
期刊介绍: Frontiers in Molecular Neuroscience is a first-tier electronic journal devoted to identifying key molecules, as well as their functions and interactions, that underlie the structure, design and function of the brain across all levels. The scope of our journal encompasses synaptic and cellular proteins, coding and non-coding RNA, and molecular mechanisms regulating cellular and dendritic RNA translation. In recent years, a plethora of new cellular and synaptic players have been identified from reduced systems, such as neuronal cultures, but the relevance of these molecules in terms of cellular and synaptic function and plasticity in the living brain and its circuits has not been validated. The effects of spine growth and density observed using gene products identified from in vitro work are frequently not reproduced in vivo. Our journal is particularly interested in studies on genetically engineered model organisms (C. elegans, Drosophila, mouse), in which alterations in key molecules underlying cellular and synaptic function and plasticity produce defined anatomical, physiological and behavioral changes. In the mouse, genetic alterations limited to particular neural circuits (olfactory bulb, motor cortex, cortical layers, hippocampal subfields, cerebellum), preferably regulated in time and on demand, are of special interest, as they sidestep potential compensatory developmental effects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信