Helena da Silva Viana de Souza, Anupama Kumar, Dayanthi Nugegoda
{"title":"Multigenerational effects of individual and binary mixtures of two commonly used NSAIDs on Daphnia carinata.","authors":"Helena da Silva Viana de Souza, Anupama Kumar, Dayanthi Nugegoda","doi":"10.1007/s10646-024-02824-1","DOIUrl":null,"url":null,"abstract":"<p><p>Pharmaceuticals, including non-steroidal anti-inflammatory drugs (NSAIDs) like ibuprofen (IBU) and naproxen (NPX), are widely used for medical purposes but have also become prevalent environmental contaminants. However, there is limited understanding of their effects on aquatic organisms, especially regarding multigenerational and mixture exposures. This study aimed to evaluate the toxicological impacts of ibuprofen and naproxen, individually and in combination, on three generations of Daphnia carinata, a freshwater organism. Daphnids were exposed to environmentally relevant concentrations of ibuprofen and naproxen (0.1, 0.5, 2.5 µg/L and 0.1 + 0.1, 0.1 + 0.5, 2.5 + 2.5 µg/L) throughout multiple generations. The endpoints assessed were reproduction, body size, reproduction recovery, and behaviour. The results revealed that ibuprofen and naproxen negatively impacted reproduction, reducing reproduction output across generations. Additionally, daphnids exhibited changes in body size, with significant alterations observed in the F2 and F3 generations. Male individuals and ephippium were also present at all concentrations throughout all generations. Although reproduction recovery could not be observed in daphnids after one generation in clean water, the average number of neonates was higher in a few treatments in generation F4 compared to generation F3. In addition, binary mixtures of the drugs showed synergistic effects on daphnids' reproduction for most generations. The multigenerational approach provided valuable insights into the long-term effects of these NSAIDs on reproduction success and population dynamics. This study contributes to understanding the ecotoxicity of ibuprofen and naproxen in aquatic organisms, particularly in a multigenerational context and in the presence of mixture exposures.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10646-024-02824-1","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pharmaceuticals, including non-steroidal anti-inflammatory drugs (NSAIDs) like ibuprofen (IBU) and naproxen (NPX), are widely used for medical purposes but have also become prevalent environmental contaminants. However, there is limited understanding of their effects on aquatic organisms, especially regarding multigenerational and mixture exposures. This study aimed to evaluate the toxicological impacts of ibuprofen and naproxen, individually and in combination, on three generations of Daphnia carinata, a freshwater organism. Daphnids were exposed to environmentally relevant concentrations of ibuprofen and naproxen (0.1, 0.5, 2.5 µg/L and 0.1 + 0.1, 0.1 + 0.5, 2.5 + 2.5 µg/L) throughout multiple generations. The endpoints assessed were reproduction, body size, reproduction recovery, and behaviour. The results revealed that ibuprofen and naproxen negatively impacted reproduction, reducing reproduction output across generations. Additionally, daphnids exhibited changes in body size, with significant alterations observed in the F2 and F3 generations. Male individuals and ephippium were also present at all concentrations throughout all generations. Although reproduction recovery could not be observed in daphnids after one generation in clean water, the average number of neonates was higher in a few treatments in generation F4 compared to generation F3. In addition, binary mixtures of the drugs showed synergistic effects on daphnids' reproduction for most generations. The multigenerational approach provided valuable insights into the long-term effects of these NSAIDs on reproduction success and population dynamics. This study contributes to understanding the ecotoxicity of ibuprofen and naproxen in aquatic organisms, particularly in a multigenerational context and in the presence of mixture exposures.
期刊介绍:
Ecotoxicology is an international journal devoted to the publication of fundamental research on the effects of toxic chemicals on populations, communities and terrestrial, freshwater and marine ecosystems. It aims to elucidate mechanisms and processes whereby chemicals exert their effects on ecosystems and the impact caused at the population or community level. The journal is not biased with respect to taxon or biome, and papers that indicate possible new approaches to regulation and control of toxic chemicals and those aiding in formulating ways of conserving threatened species are particularly welcome. Studies on individuals should demonstrate linkage to population effects in clear and quantitative ways. Laboratory studies must show a clear linkage to specific field situations. The journal includes not only original research papers but technical notes and review articles, both invited and submitted. A strong, broadly based editorial board ensures as wide an international coverage as possible.