Unveiling the Interplay between Dopamine-like Molecules and Β-Amyloid Peptide: A Combined Molecular Dynamic and DFT Approach.

IF 1.6 4区 医学 Q4 BIOCHEMICAL RESEARCH METHODS
Mohammad Erfan Zand, Mohammad Reza Bozorgmehr, Mohammad Momen Heravi, S Ali Beyramabadi
{"title":"Unveiling the Interplay between Dopamine-like Molecules and Β-Amyloid Peptide: A Combined Molecular Dynamic and DFT Approach.","authors":"Mohammad Erfan Zand, Mohammad Reza Bozorgmehr, Mohammad Momen Heravi, S Ali Beyramabadi","doi":"10.2174/0113862073331831241015103725","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>This study aims explore the impact of catechol, dopamine, and L-DOPA on the stability and toxicity of β-amyloid peptides, which play a key role in the neurodegenerative process of Alzheimer's disease, to assess their potential as therapeutic agents.</p><p><strong>Background: </strong>Alzheimer's disease is marked by the aggregation of β-amyloid peptides, which contribute to neurodegeneration. Exploring how various compounds interact with β-amyloid peptides can offer valuable insights into potential therapeutic strategies.</p><p><strong>Objective: </strong>The objective of this research is to explore the interaction mechanisms of catechol, dopamine, and L-DOPA with β-amyloid peptides and assess their impact on peptide stability and aggregation.</p><p><strong>Method: </strong>This study employs molecular dynamics simulations combined with density functional theory to investigate the interactions between β-amyloid and the three compounds. It evaluates changes in peptide stability and salt bridge lengths and performs electronic structure analyses using the Electron Localization Function (ELF) and Harmonic Oscillator Model of Aromaticity (HOMA).</p><p><strong>Results: </strong>The findings reveal that β-amyloid stability decreases significantly when interacting with dopamine and L-DOPA compared to catechol. All three compounds inhibit β-amyloid, with dopamine and L-DOPA showing stronger effects. Catechol primarily interacts through hydrophobic interactions, while dopamine and L-DOPA also form hydrogen bonds with β-amyloid. Electronic structure analysis shows catechol has higher electron localization and anti-aromatic character, affecting its interactions differently than dopamine and L-DOPA. A decrease in the HOMO-LUMO gap from catechol to L-DOPA to dopamine indicates increasing reactivity towards β-amyloid.</p><p><strong>Conclusion: </strong>Dopamine and L-DOPA more effectively disrupt β-amyloid aggregation than catechol, likely due to additional hydrogen bonding and increased electronic reactivity. These insights are crucial for developing therapeutic strategies targeting β-amyloid aggregation in Alzheimer's disease, emphasizing the importance of molecular interactions in modulating peptide stability and toxicity. The study also provides a comparative analysis of the electronic properties and interaction dynamics of the compounds, which can guide future research in the design of β-amyloid inhibitors. The utilization of advanced simulation techniques underscores the potential for computational methods in understanding complex biological interactions and developing novel therapeutic agents. Furthermore, the insights into the differential effects of hydrophobic interactions versus hydrogen bonding offer valuable information for the synthesis of new compounds aimed at mitigating β-amyloid toxicity.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073331831241015103725","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: This study aims explore the impact of catechol, dopamine, and L-DOPA on the stability and toxicity of β-amyloid peptides, which play a key role in the neurodegenerative process of Alzheimer's disease, to assess their potential as therapeutic agents.

Background: Alzheimer's disease is marked by the aggregation of β-amyloid peptides, which contribute to neurodegeneration. Exploring how various compounds interact with β-amyloid peptides can offer valuable insights into potential therapeutic strategies.

Objective: The objective of this research is to explore the interaction mechanisms of catechol, dopamine, and L-DOPA with β-amyloid peptides and assess their impact on peptide stability and aggregation.

Method: This study employs molecular dynamics simulations combined with density functional theory to investigate the interactions between β-amyloid and the three compounds. It evaluates changes in peptide stability and salt bridge lengths and performs electronic structure analyses using the Electron Localization Function (ELF) and Harmonic Oscillator Model of Aromaticity (HOMA).

Results: The findings reveal that β-amyloid stability decreases significantly when interacting with dopamine and L-DOPA compared to catechol. All three compounds inhibit β-amyloid, with dopamine and L-DOPA showing stronger effects. Catechol primarily interacts through hydrophobic interactions, while dopamine and L-DOPA also form hydrogen bonds with β-amyloid. Electronic structure analysis shows catechol has higher electron localization and anti-aromatic character, affecting its interactions differently than dopamine and L-DOPA. A decrease in the HOMO-LUMO gap from catechol to L-DOPA to dopamine indicates increasing reactivity towards β-amyloid.

Conclusion: Dopamine and L-DOPA more effectively disrupt β-amyloid aggregation than catechol, likely due to additional hydrogen bonding and increased electronic reactivity. These insights are crucial for developing therapeutic strategies targeting β-amyloid aggregation in Alzheimer's disease, emphasizing the importance of molecular interactions in modulating peptide stability and toxicity. The study also provides a comparative analysis of the electronic properties and interaction dynamics of the compounds, which can guide future research in the design of β-amyloid inhibitors. The utilization of advanced simulation techniques underscores the potential for computational methods in understanding complex biological interactions and developing novel therapeutic agents. Furthermore, the insights into the differential effects of hydrophobic interactions versus hydrogen bonding offer valuable information for the synthesis of new compounds aimed at mitigating β-amyloid toxicity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
5.60%
发文量
327
审稿时长
7.5 months
期刊介绍: Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal: Target identification and validation Assay design, development, miniaturization and comparison High throughput/high content/in silico screening and associated technologies Label-free detection technologies and applications Stem cell technologies Biomarkers ADMET/PK/PD methodologies and screening Probe discovery and development, hit to lead optimization Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries) Chemical library design and chemical diversity Chemo/bio-informatics, data mining Compound management Pharmacognosy Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products) Natural Product Analytical Studies Bipharmaceutical studies of Natural products Drug repurposing Data management and statistical analysis Laboratory automation, robotics, microfluidics, signal detection technologies Current & Future Institutional Research Profile Technology transfer, legal and licensing issues Patents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信