SLC7A5 is required for cancer cell growth under arginine-limited conditions.

IF 7.5 1区 生物学 Q1 CELL BIOLOGY
Cell reports Pub Date : 2025-01-28 Epub Date: 2025-01-03 DOI:10.1016/j.celrep.2024.115130
Kyle N Dunlap, Austin Bender, Alexis Bowles, Alex J Bott, Joshua Tay, Allie H Grossmann, Jared Rutter, Gregory S Ducker
{"title":"SLC7A5 is required for cancer cell growth under arginine-limited conditions.","authors":"Kyle N Dunlap, Austin Bender, Alexis Bowles, Alex J Bott, Joshua Tay, Allie H Grossmann, Jared Rutter, Gregory S Ducker","doi":"10.1016/j.celrep.2024.115130","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor cells must optimize metabolite acquisition between synthesis and uptake from a microenvironment characterized by hypoxia, lactate accumulation, and depletion of many amino acids, including arginine. We performed a metabolism-focused functional screen using CRISPR-Cas9 to identify pathways and factors that enable tumor growth in an arginine-depleted environment. Our screen identified the SLC-family transporter SLC7A5 as required for growth, and we hypothesized that this protein functions as a high-affinity citrulline transporter. Using isotope tracing experiments, we show that citrulline uptake and metabolism into arginine are dependent upon expression of SLC7A5. Pharmacological inhibition of SLC7A5 blocks growth under low-arginine conditions across a diverse group of cancer cell lines. Loss of SLC7A5 reduces tumor growth and citrulline import in a mouse tumor model. We identify a conditionally essential role for SLC7A5 in arginine metabolism, and we propose that SLC7A5-targeting therapeutic strategies in cancer may be effective in the context of arginine limitation.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 1","pages":"115130"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2024.115130","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tumor cells must optimize metabolite acquisition between synthesis and uptake from a microenvironment characterized by hypoxia, lactate accumulation, and depletion of many amino acids, including arginine. We performed a metabolism-focused functional screen using CRISPR-Cas9 to identify pathways and factors that enable tumor growth in an arginine-depleted environment. Our screen identified the SLC-family transporter SLC7A5 as required for growth, and we hypothesized that this protein functions as a high-affinity citrulline transporter. Using isotope tracing experiments, we show that citrulline uptake and metabolism into arginine are dependent upon expression of SLC7A5. Pharmacological inhibition of SLC7A5 blocks growth under low-arginine conditions across a diverse group of cancer cell lines. Loss of SLC7A5 reduces tumor growth and citrulline import in a mouse tumor model. We identify a conditionally essential role for SLC7A5 in arginine metabolism, and we propose that SLC7A5-targeting therapeutic strategies in cancer may be effective in the context of arginine limitation.

SLC7A5是癌细胞在精氨酸限制条件下生长所必需的。
肿瘤细胞必须在一个以缺氧、乳酸积累和许多氨基酸(包括精氨酸)耗竭为特征的微环境中优化代谢物的合成和摄取。我们使用CRISPR-Cas9进行了以代谢为重点的功能筛选,以确定在精氨酸缺乏的环境中使肿瘤生长的途径和因素。我们的筛选确定了slc家族转运蛋白SLC7A5是生长所必需的,我们假设这种蛋白作为高亲和力瓜氨酸转运蛋白起作用。通过同位素示踪实验,我们发现瓜氨酸的摄取和转化为精氨酸依赖于SLC7A5的表达。SLC7A5的药理抑制在低精氨酸条件下阻断多种癌细胞系的生长。在小鼠肿瘤模型中,SLC7A5缺失会降低肿瘤生长和瓜氨酸的输入。我们确定了SLC7A5在精氨酸代谢中的有条件的必要作用,我们提出SLC7A5靶向治疗癌症的策略可能在精氨酸限制的背景下有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell reports
Cell reports CELL BIOLOGY-
CiteScore
13.80
自引率
1.10%
发文量
1305
审稿时长
77 days
期刊介绍: Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted. The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership. The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信