Kitra Cates, Luorongxin Yuan, Yan Yang, Andrew S Yoo
{"title":"Fate erasure logic of gene networks underlying direct neuronal conversion of somatic cells by microRNAs.","authors":"Kitra Cates, Luorongxin Yuan, Yan Yang, Andrew S Yoo","doi":"10.1016/j.celrep.2024.115153","DOIUrl":null,"url":null,"abstract":"<p><p>Neurogenic microRNAs 9/9<sup>∗</sup> and 124 (miR-9/9<sup>∗</sup>-124) drive the direct reprogramming of human fibroblasts into neurons with the initiation of the fate erasure of fibroblasts. However, whether the miR-9/9<sup>∗</sup>-124 fate erasure logic extends to the neuronal conversion of other somatic cell types remains unknown. Here, we uncover that miR-9/9<sup>∗</sup>-124 induces neuronal conversion of multiple cell types: dura fibroblasts, astrocytes, smooth muscle cells, and pericytes. We reveal the cell-type-specific and pan-somatic gene network erasure induced by miR-9/9<sup>∗</sup>-124, including cell cycle, morphology, and proteostasis gene networks. Leveraging these pan-somatic gene networks, we predict upstream regulators that may antagonize somatic fate erasure. Among the predicted regulators, we identify TP53 (p53), whose inhibition is sufficient to enhance neuronal conversion even in post-mitotic cells. This study extends miR-9/9<sup>∗</sup>-124 reprogramming to alternate somatic cells, reveals the pan-somatic gene network fate erasure logic of miR-9/9<sup>∗</sup>-124, and shows a neurogenic role for p53 inhibition in the miR-9/9<sup>∗</sup>-124 signaling cascade.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 1","pages":"115153"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2024.115153","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neurogenic microRNAs 9/9∗ and 124 (miR-9/9∗-124) drive the direct reprogramming of human fibroblasts into neurons with the initiation of the fate erasure of fibroblasts. However, whether the miR-9/9∗-124 fate erasure logic extends to the neuronal conversion of other somatic cell types remains unknown. Here, we uncover that miR-9/9∗-124 induces neuronal conversion of multiple cell types: dura fibroblasts, astrocytes, smooth muscle cells, and pericytes. We reveal the cell-type-specific and pan-somatic gene network erasure induced by miR-9/9∗-124, including cell cycle, morphology, and proteostasis gene networks. Leveraging these pan-somatic gene networks, we predict upstream regulators that may antagonize somatic fate erasure. Among the predicted regulators, we identify TP53 (p53), whose inhibition is sufficient to enhance neuronal conversion even in post-mitotic cells. This study extends miR-9/9∗-124 reprogramming to alternate somatic cells, reveals the pan-somatic gene network fate erasure logic of miR-9/9∗-124, and shows a neurogenic role for p53 inhibition in the miR-9/9∗-124 signaling cascade.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.