Mingyang Wang, Zhiliang Wang, Xiaofeng Zou, Danhe Yang, Ke Xu
{"title":"The regulatory role of KIAA1429 in epithelial-mesenchymal transition in cervical cancer via mediating m6A modification of BTG2.","authors":"Mingyang Wang, Zhiliang Wang, Xiaofeng Zou, Danhe Yang, Ke Xu","doi":"10.1007/s10616-024-00694-3","DOIUrl":null,"url":null,"abstract":"<p><p>Cervical cancer (CC) represents one of the important cancers affecting global female population worldwide. We sought to elucidate the roles and mechanisms of KIAA1429 in the malignant properties of CC cells and the epithelial-mesenchymal transition (EMT) process. KIAA1429 was predicted to be abnormally expressed in CC and correlate with shortened survival of CC patients by GEPIA2 and GSCA databases. High expression of KIAA1429 in human CC cell lines (SiHa, HT-3) was validated by RT-qPCR and Western blot assays. A series of small interfering (si)RNAs including si-KIAA1429-1, si-KIAA1429-2, si-YTHDF2, si-BTG2, and si-negative control (NC) were utilized to interfere the expression levels of KIAA1429, YTHDF2, and BTG2, respectively. Consequently, KIAA1429 silencing attenuated the proliferation, migratory, and invasive functions of CC cells and repressed EMT while promoting CC cell apoptosis. Mechanistically, KIAA1429 could affect N6-methyladenosine (m6A) modification to attenuate the stability of BTG2 mRNA and down-regulate its expression. Additionally, loss of BTG2 partly counteracted the effects of si-KIAA1429 on repressing the malignant activities of CC cells. The aforementioned results collectively demonstrated that KIAA1429-mediated m6A modification of BTG2 and contributed to malignant progression of CC in vitro.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s10616-024-00694-3.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"77 1","pages":"34"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699186/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-024-00694-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cervical cancer (CC) represents one of the important cancers affecting global female population worldwide. We sought to elucidate the roles and mechanisms of KIAA1429 in the malignant properties of CC cells and the epithelial-mesenchymal transition (EMT) process. KIAA1429 was predicted to be abnormally expressed in CC and correlate with shortened survival of CC patients by GEPIA2 and GSCA databases. High expression of KIAA1429 in human CC cell lines (SiHa, HT-3) was validated by RT-qPCR and Western blot assays. A series of small interfering (si)RNAs including si-KIAA1429-1, si-KIAA1429-2, si-YTHDF2, si-BTG2, and si-negative control (NC) were utilized to interfere the expression levels of KIAA1429, YTHDF2, and BTG2, respectively. Consequently, KIAA1429 silencing attenuated the proliferation, migratory, and invasive functions of CC cells and repressed EMT while promoting CC cell apoptosis. Mechanistically, KIAA1429 could affect N6-methyladenosine (m6A) modification to attenuate the stability of BTG2 mRNA and down-regulate its expression. Additionally, loss of BTG2 partly counteracted the effects of si-KIAA1429 on repressing the malignant activities of CC cells. The aforementioned results collectively demonstrated that KIAA1429-mediated m6A modification of BTG2 and contributed to malignant progression of CC in vitro.
Supplementary information: The online version contains supplementary material available at 10.1007/s10616-024-00694-3.
期刊介绍:
The scope of the Journal includes:
1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products.
2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools.
3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research.
4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy.
5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.