Joanna Jaworska, Dawid Tobolski, Shebl E Salem, Anne Kahler, Izabela Wocławek-Potocka, Amanda M Mestre
{"title":"Single-cell atlas of the pregnant equine endometrium before and after implantation.","authors":"Joanna Jaworska, Dawid Tobolski, Shebl E Salem, Anne Kahler, Izabela Wocławek-Potocka, Amanda M Mestre","doi":"10.1093/biolre/ioaf004","DOIUrl":null,"url":null,"abstract":"<p><p>Embryo implantation in the mare occurs just over one month after fertilization, coinciding with the production of chorionic gonadotropin. The factors that regulate this late implantation in the mare, and whether they are unique to horses or shared with more invasive embryo implantation in other species, remain poorly understood. This study aimed to determine and compare the transcriptome and subpopulations of endometrial cells before and after embryo implantation in the horse. Single-cell RNA sequencing was used to characterize the transcriptome of nearly 97,000 endometrial cells collected from biopsies of the endometrium at the beginning (day 33 of gestation) and after embryo implantation (day 42 of gestation) in mares. Sixteen immune and 24 non-immune cell clusters were identified, representing known major cell populations as well as novel subpopulations of horse immune cells such as resident innate lymphoid cells and mucosal-associated invariant T cells. Contrary to current knowledge, endometrial natural killer (eNK) cells were the most abundant endometrial leukocyte population during implantation in horses. Moreover, eNK cells not only expressed genes that may interact with fetal MHC I, such as LY49F, but also exert immunoregulatory functions independent of MHC I expression, such as CD96/TIGIT. Analogous to other species studied, upregulation of CXCR4 was found in several subpopulations of immune cells. Our results suggest that despite distinctive and later placentation compared with humans, horses share some key similarities in the mechanisms of embryo implantation.</p>","PeriodicalId":8965,"journal":{"name":"Biology of Reproduction","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology of Reproduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/biolre/ioaf004","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Embryo implantation in the mare occurs just over one month after fertilization, coinciding with the production of chorionic gonadotropin. The factors that regulate this late implantation in the mare, and whether they are unique to horses or shared with more invasive embryo implantation in other species, remain poorly understood. This study aimed to determine and compare the transcriptome and subpopulations of endometrial cells before and after embryo implantation in the horse. Single-cell RNA sequencing was used to characterize the transcriptome of nearly 97,000 endometrial cells collected from biopsies of the endometrium at the beginning (day 33 of gestation) and after embryo implantation (day 42 of gestation) in mares. Sixteen immune and 24 non-immune cell clusters were identified, representing known major cell populations as well as novel subpopulations of horse immune cells such as resident innate lymphoid cells and mucosal-associated invariant T cells. Contrary to current knowledge, endometrial natural killer (eNK) cells were the most abundant endometrial leukocyte population during implantation in horses. Moreover, eNK cells not only expressed genes that may interact with fetal MHC I, such as LY49F, but also exert immunoregulatory functions independent of MHC I expression, such as CD96/TIGIT. Analogous to other species studied, upregulation of CXCR4 was found in several subpopulations of immune cells. Our results suggest that despite distinctive and later placentation compared with humans, horses share some key similarities in the mechanisms of embryo implantation.
期刊介绍:
Biology of Reproduction (BOR) is the official journal of the Society for the Study of Reproduction and publishes original research on a broad range of topics in the field of reproductive biology, as well as reviews on topics of current importance or controversy. BOR is consistently one of the most highly cited journals publishing original research in the field of reproductive biology.