{"title":"Anti-biofilm effect of ferulic acid against <i>Enterobacter hormaechei</i> and <i>Klebsiella pneumoniae</i>: <i>in vitro</i> and <i>in silico</i> investigation.","authors":"Parvathi Vaikkathillam, Minsa Mini, Aparna Mohan, Devi Jayakumar, Pooja P Rajan, Sneha Asha, Praveen Kumar","doi":"10.1080/08927014.2024.2446927","DOIUrl":null,"url":null,"abstract":"<p><p><i>Enterobacter hormaechei</i> and <i>Klebsiella pneumoniae</i>, key members of the ESKAPE group of hospital-acquired pathogens, are driving forces behind numerous infections due to their potent biofilm formation and the growing threat of antimicrobial resistance. Ferulic acid (FA) is known for its strong antioxidant properties and is recognized for its numerous physiological benefits, including anti-inflammatory, antimicrobial, anticancer, and antidiabetic effects. The current investigation delves into the antimicrobial and antibiofilm ability of FA against <i>E. hormaechei</i> and <i>K. pneumoniae</i>. Using different assays, we confirmed that FA inhibits the biofilm formation of these pathogens. Through computational studies involving molecular docking and molecular dynamics simulations, it was found that FA exhibits a strong affinity for binding with MrkB in <i>E. hormaechei</i> and MrkH in <i>K. pneumoniae</i>, crucial proteins involved in biofilm formation. We hypothesise that FA might interfere with adhesion-associated molecules and inhibit biofilms through the c-di-GMP pathway and proves as an effective antibiofilm compound.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"1-14"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2024.2446927","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Enterobacter hormaechei and Klebsiella pneumoniae, key members of the ESKAPE group of hospital-acquired pathogens, are driving forces behind numerous infections due to their potent biofilm formation and the growing threat of antimicrobial resistance. Ferulic acid (FA) is known for its strong antioxidant properties and is recognized for its numerous physiological benefits, including anti-inflammatory, antimicrobial, anticancer, and antidiabetic effects. The current investigation delves into the antimicrobial and antibiofilm ability of FA against E. hormaechei and K. pneumoniae. Using different assays, we confirmed that FA inhibits the biofilm formation of these pathogens. Through computational studies involving molecular docking and molecular dynamics simulations, it was found that FA exhibits a strong affinity for binding with MrkB in E. hormaechei and MrkH in K. pneumoniae, crucial proteins involved in biofilm formation. We hypothesise that FA might interfere with adhesion-associated molecules and inhibit biofilms through the c-di-GMP pathway and proves as an effective antibiofilm compound.
期刊介绍:
Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion.
Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context.
Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.