Anticancer therapeutic effect of magnetic guided cobalt ferrite/doxorubicin-loaded ROS-responsive bilirubin nanoparticles in a colon cancer model.

IF 5.4 2区 医学 Q1 BIOPHYSICS
Hyo Kang, Reju George Thomas, Subin Kim, Jae Kyun Ju, Yong Yeon Jeong
{"title":"Anticancer therapeutic effect of magnetic guided cobalt ferrite/doxorubicin-loaded ROS-responsive bilirubin nanoparticles in a colon cancer model.","authors":"Hyo Kang, Reju George Thomas, Subin Kim, Jae Kyun Ju, Yong Yeon Jeong","doi":"10.1016/j.colsurfb.2024.114487","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The aim of this study is to synthesize the cobalt iron oxide (CoFe) and doxorubicin (Dox)-loaded chitosan bilirubin (ChiBil) nanoparticles and to investigate the anticancer therapeutic effect of the synthesized nanoparticles under magnetic guidance in a colon cancer.</p><p><strong>Materials and methods: </strong>ChiBil-CoFe-Dox nanoparticles were synthesized by conjugating CoFe and Dox and then loaded onto ChiBil nanoparticles. Synthesis were characterized using thermogravimetric (TGA) analysis, inductive coupled plasma (ICP) analysis, dynamic light scattering (DLS), zeta potential and field emission-transmission electron microscopy (FE-TEM). Cellular uptake and cytotoxicity studies were conducted in vitro. Biodistribution and tumor inhibition study was done in vivo CT-26 colon cancer model.</p><p><strong>Results: </strong>The ChiBil-CoFe-Dox nanoparticles were successfully synthesized in this study. The in vitro cytotoxicity study showed that the ChiBil-CoFe-Dox nanoparticle had a toxic effect on cancer cells. The accumulation of ChiBil-CoFe-Dox nanoparticles was enhanced under magnetic guidance, as observed by in vivo. Tumor inhibition study showed that the ChiBil-CoFe-Dox nanoparticle effectively reduced tumor size in vivo mice colon cancer model, especially when combined with magnetic guidance.</p><p><strong>Conclusion: </strong>This study showed that ChiBil-CoFe-Dox nanoparticle was successfully synthesized and effectively reduced tumor size, especially when combined with magnetic guidance. The in vitro and in vivo results suggested that the ROS stimuli responsive ChiBil-CoFe-Dox nanoparticles may be a potent therapeutic option for treating colon cancer.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"248 ","pages":"114487"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.colsurfb.2024.114487","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: The aim of this study is to synthesize the cobalt iron oxide (CoFe) and doxorubicin (Dox)-loaded chitosan bilirubin (ChiBil) nanoparticles and to investigate the anticancer therapeutic effect of the synthesized nanoparticles under magnetic guidance in a colon cancer.

Materials and methods: ChiBil-CoFe-Dox nanoparticles were synthesized by conjugating CoFe and Dox and then loaded onto ChiBil nanoparticles. Synthesis were characterized using thermogravimetric (TGA) analysis, inductive coupled plasma (ICP) analysis, dynamic light scattering (DLS), zeta potential and field emission-transmission electron microscopy (FE-TEM). Cellular uptake and cytotoxicity studies were conducted in vitro. Biodistribution and tumor inhibition study was done in vivo CT-26 colon cancer model.

Results: The ChiBil-CoFe-Dox nanoparticles were successfully synthesized in this study. The in vitro cytotoxicity study showed that the ChiBil-CoFe-Dox nanoparticle had a toxic effect on cancer cells. The accumulation of ChiBil-CoFe-Dox nanoparticles was enhanced under magnetic guidance, as observed by in vivo. Tumor inhibition study showed that the ChiBil-CoFe-Dox nanoparticle effectively reduced tumor size in vivo mice colon cancer model, especially when combined with magnetic guidance.

Conclusion: This study showed that ChiBil-CoFe-Dox nanoparticle was successfully synthesized and effectively reduced tumor size, especially when combined with magnetic guidance. The in vitro and in vivo results suggested that the ROS stimuli responsive ChiBil-CoFe-Dox nanoparticles may be a potent therapeutic option for treating colon cancer.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Colloids and Surfaces B: Biointerfaces
Colloids and Surfaces B: Biointerfaces 生物-材料科学:生物材料
CiteScore
11.10
自引率
3.40%
发文量
730
审稿时长
42 days
期刊介绍: Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields. Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication. The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信