Multifunctional Carbon Dots In Situ Confined Hydrogel for Optical Communication, Drug Delivery, pH Sensing, Nanozymatic Activity, and UV Shielding Applications.

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Parham Khoshbakht Marvi, Poushali Das, Arman Jafari, Shiza Hassan, Houman Savoji, Seshasai Srinivasan, Amin Reza Rajabzadeh
{"title":"Multifunctional Carbon Dots In Situ Confined Hydrogel for Optical Communication, Drug Delivery, pH Sensing, Nanozymatic Activity, and UV Shielding Applications.","authors":"Parham Khoshbakht Marvi, Poushali Das, Arman Jafari, Shiza Hassan, Houman Savoji, Seshasai Srinivasan, Amin Reza Rajabzadeh","doi":"10.1002/adhm.202403876","DOIUrl":null,"url":null,"abstract":"<p><p>Inspired by the emerging potential of photoluminescent hydrogels, this work unlocks new avenues for advanced biosensing, bioimaging, and drug delivery applications. Carbon quantum dots (CDs) are deemed particularly promising among various optical dyes, for enhancing polymeric networks with superior physical and chemical properties. This study presents the synthesis of CDs derived from Prunella vulgaris, a natural plant resource, through a single-step hydrothermal process, followed by their uniform integration into hydrogel matrices via an in situ free radical graft polymerization. The resulting CD-integrated hydrogels exhibit multifunctionality in biomedical applications, featuring a diffusion-controlled drug release mechanism, permit concurrent delivery of photoluminescent CDs and therapeutic agents, enabling real-time monitoring over 32 h. In addition, these hydrogels function as a broad-range optical pH sensor (pH 3-11), provide robust ultraviolet (UV) shielding, and demonstrate nanozyme-like peroxidase activity. Critically, biocompatibility tests confirm their non-cytotoxicity toward fibroblast cells, establishing these hydrogels as promising candidates for diverse biomedical applications. These include advanced wound dressings that monitor the healing process and detect infection through pH sensing, and promote healing through the nanozymatic activity, all while maintaining a moist wound microenvironment. These hydrogels demonstrate exceptional suitability for advanced smart drug delivery, effective UV-blocking, and as innovative platforms for in vivo sensing and bioimaging.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403876"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202403876","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Inspired by the emerging potential of photoluminescent hydrogels, this work unlocks new avenues for advanced biosensing, bioimaging, and drug delivery applications. Carbon quantum dots (CDs) are deemed particularly promising among various optical dyes, for enhancing polymeric networks with superior physical and chemical properties. This study presents the synthesis of CDs derived from Prunella vulgaris, a natural plant resource, through a single-step hydrothermal process, followed by their uniform integration into hydrogel matrices via an in situ free radical graft polymerization. The resulting CD-integrated hydrogels exhibit multifunctionality in biomedical applications, featuring a diffusion-controlled drug release mechanism, permit concurrent delivery of photoluminescent CDs and therapeutic agents, enabling real-time monitoring over 32 h. In addition, these hydrogels function as a broad-range optical pH sensor (pH 3-11), provide robust ultraviolet (UV) shielding, and demonstrate nanozyme-like peroxidase activity. Critically, biocompatibility tests confirm their non-cytotoxicity toward fibroblast cells, establishing these hydrogels as promising candidates for diverse biomedical applications. These include advanced wound dressings that monitor the healing process and detect infection through pH sensing, and promote healing through the nanozymatic activity, all while maintaining a moist wound microenvironment. These hydrogels demonstrate exceptional suitability for advanced smart drug delivery, effective UV-blocking, and as innovative platforms for in vivo sensing and bioimaging.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信